Phân tích đa thức thành nhân tử :
a . (a + 2b)3 - b . (2a + b)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các oxit tác dụng vời \(H_2O\)ở nhiệt dộ thường là: \(K_2O;N_2O_5;SO_3;P_2O_5\)
PTHH
\(K_2O+H_2O\rightarrow2KOH\)
\(N_2O_5+H_2O\rightarrow2HNO_3\)
\(SO_3+H_2O\rightarrow H_2SO_4\)
\(P_2O_5+3H_2O\rightarrow2H_3PO_4\)
Học tốt
Bổ dung thêm \(ab^2+bc^2+ca^2=3\)
Áp dụng BĐT Cauchy ba số:
\(\left(a+7\right)+8+8\ge3\sqrt[3]{\left(a+7\right)8\cdot8}=12\sqrt[3]{a+7}\)
\(\Rightarrow\sqrt[3]{a+7}\le\frac{a+23}{12}\)
Tương tự ta có: \(\hept{\begin{cases}\sqrt[3]{b+7}\le\frac{b+23}{12}\\\sqrt[3]{c+7}\le\frac{c+23}{12}\end{cases}}\)
Cộng các BĐT trên ta nhận được:
\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le\frac{a+b+c+69}{12}\)
Áp dụng BĐT Cauchy 4 số:
\(a\le\frac{a^4+1+1+1}{4}=\frac{a^4+3}{4};b\le\frac{b^4+3}{4};c\le\frac{c^4+3}{4}\)
\(\Rightarrow\frac{a+b+c+69}{12}\le\frac{\frac{a^4+3}{4}+\frac{b^4+3}{4}+\frac{c^4+3}{4}+69}{12}=\frac{a^4+b^4+c^4+285}{48}\)
Ta chứng minh \(\frac{a^4+b^4+c^4+285}{48}\le2\left(a^4+b^4+c^4\right)\)
Áp dụng BĐT Cauchy 4 số: \(\hept{\begin{cases}a^4+b^4+b^4+1\ge4ab\\b^4+c^4+c^4+1\ge4bc^2\\c^4+a^4+a^4+1\ge4ca^2\end{cases}}\)
Cộng các BĐT trên ta thu được \(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)
\(\Leftrightarrow a^4+b^4+c^4\ge3\)
=> đpcm
Ta có
\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)
\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)
\(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)
\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)
\(=>=3+\frac{3+3}{2}=6\)
=> dpcm
cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm
(a - b)^2 = a^2 - 2ab + b^2 > 0
(b - c)^2 = b^2 - 2bc + c^2 > 0
(c - a)^2 = c^2 - 2ac + a^2 > 0
=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac
=> 6 > 2ab + 2bc + 2ac
=> 3 > ab + bc + ac (1)
(a - 1)^2 = a^2 - 2a + 1 > 0
(b - 1)^2 = b^2 - 2b + 1 > 0
(c - 1)^2 = c^2 - 2c + 1 > 0
=> a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c
=> 6 > 2a + 2b + 2c
=> 3 > a + b + c và (1)
=> 6 > ab + ac + bc + a + b + c
Ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )
Áp dụng:
\(G=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(\ge\frac{ab\left(a+b\right)}{2ab}+\frac{bc\left(b+c\right)}{2bc}+\frac{ca\left(c+a\right)}{2ca}\)
\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\)
\(=a+b+c=2019\)
Dấu "=" xảy ra tại a=b=c=673
Chu vi đáy là:
4 + 5 + 6 = 15 ( cm)
Diện tích xung quanh là:
15 x 6 = 90 ( cm^2)
Đáp số:...
\(a.\left(a+2b\right)^3-b.\left(2a+b\right)^3\)
\(=a.\left(a+20+b\right)^3-b.\left(20+a+b\right)^3\)
\(=\left(a-b\right).\left(a+20+b\right)^3\)
Thế này có phải là phân tích đa thức thành nhân tử k ạ
Chúc bạn học tốt
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=\left(a^4+6a^3b+12a^2b^2+8ab^3\right)-\left(b^4+8a^3b+12a^2b^2+6ab^3\right)\)
\(=a^4-b^4-2a^3b+2ab^3\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a-b\right)^3\left(a+b\right)\)
OK ?