Với giá trị nào của m thì bất phương trình \(\frac{-x^2+2x-5}{x^2-mx+1}\) < 0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\Delta ABC\)có AB = 8, BC = 17 , AC = 15. Số đo góc A = ?
Theo định lí Pytago, nếu AB2 + AC2 = BC2 thì tam giác đó là tam giác vuông
Thay AB = 8, BC = 17, AC = 15 ta có
AB2 + AC2 = 82 + 152 = 289
BC2 = 172 = 289
=> 82 + 152 = 172
=> AB2 + AC2 = BC2 ( Đ/lí Pytago )
=> \(\Delta ABC\)là tam giác vuông tại A
=> \(\widehat{A}=90^0\)
Tam giác ABC có :
8²+15²=289; 17²=289
=>AB² +AC²=BC²=>tam giác ABC vuông tại A
(đ/l pytago đảo)
=>Â =90°
Bài 1:
H1;H2 lần lượt là trực tâm tam giác OAB, OCD và \(\widehat{AOB}=\widehat{COD}\)(đối đỉnh)
=> \(\frac{OH_1}{OH_2}=\frac{AB}{CD}\)
Gọi M,N,K lần lượt là trung điểm của các đoạn thẳng AD, BC, BD
Vì G1;G2 lần lượt là trọng tâm của các tam giác OAD; OBC. Nên \(\frac{OG_1}{OM}=\frac{2}{3};\frac{OG_2}{ON}=\frac{2}{3}\)
\(\Delta\)OMN có: \(\frac{OG_1}{OM}=\frac{OG_2}{ON}\left(=\frac{2}{3}\right)\)=> G1G2 // MN và \(G_1G_2=\frac{2}{3}MN\)
\(OH_1\perp MK,OH_2\perp NK,MK=\frac{AB}{2},NK=\frac{CD}{2}\)
Do đó: \(\widehat{H_1OH_2}=\widehat{MKN},\frac{OH_1}{MK}=\frac{OH_2}{NK}\). Nên \(\Delta\)OH1H2 đồng dạng với \(\Delta\)KMN (cgc)
=> \(H_1H_2\perp MN\)Mà G1G2 // MN
Nên \(H_1H_2\perp G_1G_2\)=> \(S=\frac{1}{2}H_1H_2\cdot G_1G_2\)
Áp dụng BĐT Cosi cho 2 số dương ta có:
\(S=\frac{1}{2}H_1H_2\cdot G_1G_2=\frac{3G_1G_2\cdot H_1H_2}{6}\le\frac{\left(3G_1G_2+H_1H_2\right)^2}{24}\)
Dấu "=" <=> \(3G_1G_2=H_1H_2\Leftrightarrow OH_1=AB\)và \(OH_2=CD\)
\(\Leftrightarrow\widehat{AOB}=\widehat{COD}=45^o\)
Bài 2: *có nhiều cách làm bài này, mỗi cách có 1 hình khác nhau, đang lỗi nên không vẽ được hình*
Cách 1: Ta có: \(\widehat{BAC}=90^o\)(Góc nội tiếp chắn nửa đường tròn)
Đặt BH=x, ta có HC=HB-BH=2R-x
\(\Delta\)ABC vuông tại A, AH là đường cao
=> AH2=BH.HC. Nên \(AH=\sqrt{x\left(2R-x\right)}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có: AH+BH=\(\sqrt{x\left(2R-x\right)+x}=\frac{1}{\sqrt{3+2\sqrt{2}}}\sqrt{x\left[\left(3+2\sqrt{2}\right)\left(2R-x\right)\right]}+x\)
\(\le\frac{1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\cdot\frac{a+\left(3+2\sqrt{2}\right)\left(2R-x\right)}{2}+x\)\(=\frac{1}{\sqrt{2}+1}\left[\frac{x}{2}\left(\sqrt{2}+1\right)^2\cdot R-\frac{\left(\sqrt{2}+1\right)^2\cdot x}{2}\right]+x\)
\(=\frac{\sqrt{2}-1}{2}\cdot x+\left(\sqrt{2}+1\right)R-\frac{\sqrt{2}+1}{2}x+x=\left(\sqrt{2}+1\right)R\)
Ta có AB+AH \(\le\left(\sqrt{2}+1\right)R\)không đổi
Dấu "=" xảy ra <=> \(x=\left(3+2\sqrt{2}\right)\left(2R-x\right)\)
\(\Leftrightarrow x=\frac{2+\sqrt{2}}{2}R\)
\(\Leftrightarrow\widehat{AOC}=45^o\)
Cách 2: Gọi M là điểm trên nửa đường tròn (O) sao cho \(\widehat{COM}=45^o\) và gọi N là giao của nửa đường tròn (O) tại M với BC
Ta có: M,N cố định; \(\widehat{ONM}=45^o\), BN không đổi
Điểm A trên đường tròn (O)
Do đó tia NA nằm giữa 2 tia NB và NM
\(\Rightarrow\widehat{ANH}\le\widehat{ONM}=45^o\). Mà \(\widehat{ANH}+\widehat{HAN}=90^o\), Nên \(\widehat{HAN}\ge45^o\)
=> \(\widehat{ANH}\le\widehat{HAN},\)\(\Delta\)AHN có: \(\widehat{ANH}\le\widehat{HAN}\Rightarrow AH\le HN\)
Do đó: AH+BH \(\le\)HN+BH=BN, không đổi
Dấu "=" xảy ra <=> A = M
Vậy khi A trên nửa đường tròn (O) sao cho \(\widehat{COA}=45^o\) thì AH+BH lớn nhất
\(\frac{2x-5}{\left|x-5\right|}+1\ge0\)
\(\Leftrightarrow\frac{2x-5}{\left|x-5\right|}\ge-1\)
\(\Leftrightarrow2x-5\le-\left|x-5\right|\)
\(\Leftrightarrow\left(2x-5\right)^2\le\left(-\left|x-5\right|\right)^2\)
\(\Leftrightarrow4x^2-20x+25\le x^2-10x+25\)
\(\Leftrightarrow3x^2-10x\le0\)
\(\Leftrightarrow x\left(3x-10\right)\le0\)
Làm nốt
\(-x^2+2x+5=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4< 0\left(\forall x\right)\)
=>\(\frac{-x^2+2x-5}{x^2-mx+1}\le0\left(\forall x\right)=>x^2-mx+1>0\left(\forall x\right)\)
\(\Rightarrow\Delta< 0\Leftrightarrow m^2-4< 0=>-2< m< 2\)
X2- mx+1 <0
\(\Delta\)= (-m)2 -4.1.1
\(\Delta\)= m -4
để BPT trên có nghiệm khi \(\Delta\)<0
Tức là: m-4<0
m<4
Vậy khi m<4 thì BPT luôn nhỏ hơn o với mọi x