Cho tam giác ABC vuông tại A (AB < AC), có trung tuyến AM. Kẻ MN vuông góc với AB, và MP vuông góc với AC (N thuộc AB; P thuộc AC)
a) Tứ giác ANMP là hình gì? vì sao?
b) Chứng minh: NA=NB, PA=PC và tứ giác BMPN là hình bình hành
c) Gọi E là trung điểm của BM, F là giao điểm của AM và PN. chứng minh
- Tứ giác ABEF là hình thang cân
d) Kẻ AH vuông góc với BC ; MK // AH (K thuộc AC). Chứng minh rằng BK vuông góc với HN.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
24 tháng 8 2023
Vì ABCD là hbh nên => AB=DC, AD=BC
có M là tđ của AB, P là trung điểm của DC mà AB=DC=>MB=DP (1)
N là tđ của BC, Q là tđ của AD mà AD=BC=> QD=BN (2)
Có góc QDB=góc MBN (ABCD là hbh) (3)
(1),(2),(3)=> tam giác MPN=tam giác QDP=>QP=MN
tương tự, cm QM=PN=> tứ giác QMNP có QM=BN, QP=MN => Tứ giác MNPQ là hbh( có hai cặp cạnh đối bằng nhau)
NH
0
LV
1
LV
1
LV
1
LV
1
a/
\(MP\perp AC;NA\perp AC\) => MP//NA
\(MN\perp AB;PA\perp AB\) => MN//PA
=> ANMP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có \(\widehat{A}=90^o\)
=> ANMP là hình chữ nhật (hbh có 1 góc vuông là HCN)
b/
MN//PA (cmt) => MN//AC
MB=MC (gt)
=> NA=NB (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
C/m tương tự cũng có PA=PC
Ta có
MP//NA (cmt) => MP//NB
NA=NB; PA=PC => NP là đường trung bình của tg ABC
=> NP//BC => NP//MB
=> BMPN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
c/
Xét HCN ANMP có
FM=FA (trong HCN 2 đường chéo cắt nhau tại trung điểm mỗi đường)
EM=EB (gt)
=> EF là đường trung bình của tg MAB => EF//AB
=> ABEF là hình thang
Ta có
MB=MC => AM=MB=MC=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Ta có
FM=FA=AM/2
EB=EM=BM/2
=> FA=EB
=> ABEF là hình thang cân
d/