Tam giác ABC có góc A >góc B, H thuộc BC sao cho góc HAC=góc ABC.Tia phân giác góc BAH cắt BH tại E.M là Trung điểm B,ME cắt AH tại F.CMR CF song song với AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ \(x\ne0,1\)
\(B=\frac{1}{x\left(x-1\right)}+\frac{2x}{x\left(x-1\right)}+\frac{x-1}{x\left(x-1\right)}\)
\(=\frac{3x}{x\left(x-1\right)}=\frac{3}{x-1}\)
b, Để B nguyên thì \(3⋮x-1\)
\(\Rightarrow x-1\in\left\{1,3,-1,-3\right\}\)
\(\Rightarrow x\in\left\{2,4,0,-2\right\}\)
\(ĐKXĐ:m\ge0;m\ne1\)
\(a,M=\frac{\sqrt{m}-1}{\sqrt{m}+1}+\frac{\sqrt{m}+1}{\sqrt{m}-1}\)
\(=\frac{\left(\sqrt{m}-1\right)^2+\left(\sqrt{m}+1\right)^2}{\left(\sqrt{m}+1\right)\left(\sqrt{m}-1\right)}\)
\(=\frac{m-2\sqrt{m}+1+m+2\sqrt{m}+1}{m-1}\)
\(=\frac{2m+2}{m-1}\)
b,Để M nguyên thì \(\frac{2m+2}{m-1}=\frac{2\left(m-1\right)}{m-1}+\frac{4}{m-1}=2+\frac{4}{m-1}\) nguyên
\(\Rightarrow m-1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow m=\left\{2;3;5;0;-1;-3\right\}\)
\(KethopDKXD:m=\left\{2;3;5;0\right\}\)
A B C H M E F N
Gọi N là điểm đối xứng của E qua M. Khi đó ta có ngay tứ giác AEBN là hình bình hành
=> BE // AN hoặc HE // AN. Áp dụng hệ quả ĐL Thales vào \(\Delta\)ANF có:
\(\frac{FH}{FA}=\frac{EH}{AN}\). Vì AN = EB (Tứ giác AEBN là hình bình hành) nên \(\frac{FH}{FA}=\frac{EH}{EB}\) (1)
Áp dụng ĐL đường phân giác trong tam giác (\(\Delta\)HBA) có \(\frac{EH}{EB}=\frac{AH}{AB}\)(2)
Dễ thấy ^CAE = ^HAE + ^CAH = ^BAE + ^ABC = ^AEC => \(\Delta\)ACE cân tại C => CA = CE
Ta lại có \(\Delta\)HAC ~ \(\Delta\)ABC (g.g) => \(\frac{AH}{AB}=\frac{CH}{CA}=\frac{CH}{CE}\) (3)
Từ (1),(2) và (3) suy ra \(\frac{FH}{FA}=\frac{CH}{CE}\)=> CF // AE (Theo ĐL Thales đảo) (đpcm).