Cho \(\Delta ABC\)vuông tại A có AB = a và 2 đường trung tuyến AM, BN vuông góc với nhau. Tính độ dài cạnh AC theo a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{5-3x}=\sqrt{2x+8}\)
\(\Leftrightarrow5-3x=2x+8\)
\(\Leftrightarrow-3x-2x=8-5\)
\(\Leftrightarrow-5x=3\)
\(\Leftrightarrow x=\frac{-3}{5}\)
P/S" ko chắc
Mk sửa đề lại 1 chút ( chả bt mk nhìn thế nào mak vt lộn hết cả đề )......
BÀI 1: Rút gọn
\(C=a\sqrt{\frac{4a^2-4ab+b^2}{a^2}}-2a-b\)
\(ĐKXĐ:x^2-12\ge0\Rightarrow x^2\ge12\Rightarrow x\ge-2\sqrt{3}\)
\(\sqrt{x^2-12}=2\)
\(\Leftrightarrow x^2-12=4\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
\(\frac{\sqrt{2}+\sqrt{3}}{2+\sqrt{6}}=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(2-\sqrt{6}\right)}{\left(2-\sqrt{6}\right)\left(2+\sqrt{6}\right)}\)
\(=\frac{2\sqrt{2}-2\sqrt{3}+2\sqrt{3}-3\sqrt{2}}{4-6}\)
\(=\frac{-\sqrt{2}}{-2}\)
\(=\frac{\sqrt{2}}{2}\)
cộng hai vế ta được: 2tan\(\alpha\)=\(\frac{31}{12}\)\(\Rightarrow\)tan\(\alpha\)=\(\frac{31}{24}\)
=> cot\(\alpha\)=\(\frac{17}{24}\)
mik nham r . hai cau nay rieng biet nha , ko lien quan j toi nhau
Đặt \(\hept{\begin{cases}a=\frac{x}{y}\\b=\frac{y}{z}\\c=\frac{z}{x}\end{cases}}\) Ta có: \(A=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}=\frac{1}{\frac{x}{y}+2}+\frac{1}{\frac{y}{z}+2}+\frac{1}{\frac{z}{x}+2}\)
\(=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}\)
Cần cm \(A\le1\Leftrightarrow2A\le2\)
\(\Leftrightarrow\frac{2y}{x+2y}+\frac{2z}{y+2z}+\frac{2x}{z+2x}\le2\)
\(\Leftrightarrow\left(1-\frac{2y}{x+2y}\right)+\left(1-\frac{2z}{y+2z}\right)+\left(1-\frac{2x}{z+2x}\right)\ge1\)
\(\Leftrightarrow\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\ge1\)
\(\Leftrightarrow\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\ge1\)
bđt này đúng theo cauchy-schwarz. dấu bằng xảy ra khi a=b=c=1