Rút họn các biểu thức sau:
A=\(\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}\)
B=\(\frac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}-\sqrt{7-2\sqrt{6}}}}\)
C=\(\frac{\sqrt{c^2+2c+1}}{|c|-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-9\sqrt{x}+14=x-2\sqrt{x}-7\sqrt{x}+14=\sqrt{x}\left(\sqrt{x}-2\right)-7\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-7\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=7\\\sqrt{x}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=49\\x=4\end{cases}}\)
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=> \(a+b+c=\frac{ab+bc+ac}{abc}=ab+bc+ac\)
Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(abc-1\right)+a+b+c-ab-bc-ac=0\)
=> có ít nhất 1 trong 3 số a,b,c bằng 1
Vậy có ít nhất 1 trong 3 số a,b,c bằng 1
Sử dụng hệ thức lượng trong tam giác vuông:
\(AB^2=BH.BC\Rightarrow BC=\frac{AB^2}{BH}=\frac{6^2}{3}=12\)
=> \(HC=BC-BH=12-3=9\)
=> \(AH^2=BH.CH=3.9=27\Rightarrow AH=3\sqrt{3}\)
Áp dụng định lí pi-ta-go
\(AC^2=BC^2-AB^2=12^2-6^2=108\)
=> \(AC=6\sqrt{3}\)
\(A,ĐKXĐ:x;y\ge0\)
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)
\(ĐKXĐ:x;y\ge0\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)
\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)
A B C H AB=6cm BH=3cm AH, AC, HC=?
Xét ▲ ABH vuông tại H :
ADĐL pi- ta - go ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2
AH2 = 62 - 32
AH2 = 27
AH = \(\sqrt{27}\)
AC , HC bn tự tính nốt nhé....
a, \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)
\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+\frac{24\sqrt{x-1}}{8}=-17\)
\(\Rightarrow\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Rightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\Rightarrow\sqrt{x-1}.-1=-17\)
\(\Rightarrow\sqrt{x-1}=17\)
\(\Rightarrow x-1=289\)
\(\Rightarrow x=290\)
b, \(3x-7\sqrt{x}+4=0\)
\(\Rightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x}=1\\3\sqrt{x}=4\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}}}\)
c, \(-5x+7\sqrt{x}+12=0\)
\(\Rightarrow-5x-5\sqrt{x}+12\sqrt{x}+12=0\)
\(\Rightarrow-5\sqrt{x}\left(\sqrt{x}+1\right)+12\left(x+1\right)=0\)
\(\Rightarrow\left(\sqrt{x}+1\right)\left(-5\sqrt{x}+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\-5\sqrt{x}+12=0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}=-1VN\\-5\sqrt{x}=-12\end{cases}}\Rightarrow\orbr{\begin{cases}\\\sqrt{x}=\frac{12}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\frac{144}{25}\end{cases}}}\)
1) ĐK: \(x-1\ge0\Leftrightarrow x\ge1\)
pt \(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{3}{2}.3\sqrt{x-1}+\frac{24}{8}\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+3\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=17^2=289\Leftrightarrow x=290\left(tm\right)\)
b) \(3x-7\sqrt{x}+4=0\)
ĐK: \(x\ge0\)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\Leftrightarrow t^2=x\)
Ta có phương trình ẩn t:
\(3t^2-7t+4=0\)( giải đen ta)
\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=\frac{4}{3}\end{cases}}\)
Với t=1 ta có: \(\sqrt{x}=1\Leftrightarrow x=1\) (tm)
Với t=4/3 ta có: \(\sqrt{x}=\frac{4}{3}\Leftrightarrow x=\frac{16}{9}\) (tm)
Câu c em làm tương tự câu b nhé!
\(A=\frac{a\left(\sqrt{a}+2\right)-4\left(\sqrt{a}+2\right)}{a-4}=\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{a-4}=\sqrt{a}+2\)
\(B=\frac{12\sqrt{6}}{\sqrt{\sqrt{\left(\sqrt{6}+1\right)^2}-\sqrt{\left(\sqrt{6}-1\right)^2}}}=\frac{12\sqrt{6}}{\sqrt{2}}=12\sqrt{3}\)
C k thấy đề
\(A=\frac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\frac{\left(a\sqrt{a}-4\sqrt{a}\right)+\left(2a-8\right)}{a-4}=\frac{\left(a-4\right)\left(\sqrt{a}+2\right)}{a-4}=\sqrt{a}+2\)
\(B=\frac{12\sqrt{6}}{\sqrt{7+2\sqrt{6}}-\sqrt{7-2\sqrt{6}}}=\frac{12\sqrt{6}}{\sqrt{1+6+2\sqrt{6}}-\sqrt{1+6-2\sqrt{6}}}\)
\(=\frac{12\sqrt{6}}{\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-1\right)^2}}=\frac{12\sqrt{6}}{1+\sqrt{6}-\sqrt{6}+1}=6\sqrt{6}\)
\(C=\frac{\sqrt{c^2+2c+1}}{\left|c\right|-1}=\frac{\left|c+1\right|}{\left|c\right|-1}\)