K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

\(a,\)\(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right).\)

\(=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\)\(.\left(2\sqrt{x}+2\sqrt{3}\right)\)

\(=\frac{\left(\sqrt{x}-\sqrt{3}\right)^22\left(\sqrt{x}+\sqrt{3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=2\left(\sqrt{x}-\sqrt{3}\right)\)

\(b,x=4-2\sqrt{3}\)\(=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

\(\Rightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)=2\left(\sqrt{3}-1-\sqrt{3}\right)=2.\left(-1\right)=-2\)

11 tháng 7 2019

1)Áp dụng bđt AM-GM:

\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)=\left(ab+\frac{a}{b}\right)+\left(ab+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)

\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1."="\Leftrightarrow a=b=1\)

2) Áp dụng bđt AM-GM ta có: \(a+\frac{1}{a-1}=a-1+1+\frac{1}{a-1}\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=3\)

\("="\Leftrightarrow a=2\)

3) Áp dụng bđt AM-GM:

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)=\left(\frac{ab}{c}+\frac{bc}{a}\right)+\left(\frac{ac}{b}+\frac{ab}{c}\right)+\left(\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

Cộng theo vế và rg => ddpcm. Dấu bằng khi a=b=c

10 tháng 7 2019

các bạn cứ coi như đã khoàn thành xong phần rút gọn biểu thức để làm nhé !

9 tháng 7 2019

Tam giác ABC, mình nhầm

\(\frac{2}{3}\sqrt{3}\)\(\frac{1}{4}\sqrt{18}\)\(\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{12}\)

\(\frac{2}{3}\sqrt{3}-\frac{3}{4}\sqrt{2}+\frac{2}{5}\sqrt{2}-\frac{2}{4}\sqrt{3}\)

\(\sqrt{3}\left(\frac{2}{3}-\frac{1}{2}\right)\)\(\sqrt{2}\left(\frac{3}{4}-\frac{2}{5}\right)\)

\(\frac{\sqrt{3}}{6}\)\(\frac{7}{20}\sqrt{2}\)

kq ra hơi kì

#mã mã#