cho một tam giác đều cạnh a.
a, Tính độ dài đường cao của tam giác đó theo a
Cho mk hỏi tính theo a là tuỳ độ dài mk chọn à các bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+2\right).\left(x^2-3\right)\text{=}0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2\text{=}0\\x^2-3\text{=}0\end{matrix}\right.\)
\(TH1:x^2+2\text{=}0\)
Ta thấy : \(x^2\ge0\Rightarrow x^2+2\ge2>0\)
\(\Rightarrow ptvôN_o\)
\(TH2:x^2-3\text{=}0\)
\(\Leftrightarrow x^2\text{=}3\)
\(\Leftrightarrow\left[{}\begin{matrix}x\text{=}\sqrt{3}\\x\text{=}-\sqrt{3}\end{matrix}\right.\)
Vậy.........
Cảm ơn em đã chia sẻ bài viết rất hay và bổ ích
Cảm ơn bạn đã chia sẽ bài viết nhé. Mình sẽ áp dụng rất nhiều đó!
\(\left(x-3\right)\left(x-5\right)-\left(x-4\right)^2\)
\(=x^2-5x-3x+15-\left(x^2-8x+16\right)\)
\(=x^2-5x-3x+15-x^2+8x-16\)
\(=x^2-x^2-8x+8x+15-16=-1\)
(x - 3)(x - 5) - (x - 4)²
= x² - 5x - 3x + 15 - x² + 8x - 16
= (x² - x²) + (-5x - 3x + 8x) + (15 - 16)
= -1
a, (\(x\) + y).(\(x\) + y)2 - 3\(xy\).(\(x\) + y)
= (\(x+y\))3 - 3\(x^2\)y - 3\(xy^2\)
= \(x^3\) + 3\(x^2\).y + 3\(xy^2\) + y3 - 3\(x^2\).y - 3\(xy^2\)
= \(x^3\) + y3
b, (\(x-y\)).(\(x-y\))2 - 3\(xy\).(\(x-y\))
= (\(x\) - y)3 - 3\(x^2\).y + 3\(xy^2\)
= \(x^3\) - 3\(x^2\)y + 3\(xy^2\) - y3 - 3\(x^2\)y + 3\(xy^2\)
= \(x^3\) - 6\(x^2\)y + 6\(xy^2\) - y3
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)
\(=n\left(2n^2+2n+n+1\right)\)
\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n-2+3\right)\)
\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)
Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)
Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)
Do đó: \(3n\left(n+1\right)⋮3\)
\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)
\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)
\(=n\left(2n^2-3n+1\right)\)
\(=n\left(2n^2-2n-n+1\right)\)
\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)
\(=n\left(n-1\right)\left(2n-1\right)\)
\(=n\left(n-1\right)\left(2n+2-3\right)\)
\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)
\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\)
Ta có :
\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)
\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)
Ta lại có :
\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)
\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)
\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)
\(2x\left(x-1\right)-\left(1-x\right)^2=0\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Để giải phương trình này, chúng ta có thể bắt đầu bằng cách mở ngoặc và rút gọn các thành phần. Hãy làm theo các bước sau: 1. Mở ngoặc: 2x(x-1) - (1-x)^2 = 0 => 2x^2 - 2x - (1 - 2x + x^2) = 0 2. Rút gọn các thành phần: 2x^2 - 2x - 1 + 2x - x^2 = 0 => x^2 - 1 = 0 3. Đưa phương trình về dạng chuẩn: x^2 = 1 4. Giải phương trình: - Nếu x^2 = 1, thì x có thể là 1 hoặc -1. Vậy, phương trình có hai nghiệm là x = 1 và x = -1.
\(A=x-x^2-1\)
\(A=-\left(x^2-x+1\right)\)
\(A=-\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)
Và: \(-\dfrac{3}{4}< 0\)
\(\Rightarrow A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)
c) \(x^2-9=2\cdot\left(x+3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left[x-3-2\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)
b) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
d) \(x^2-8x+3x-24=0\)
\(\Leftrightarrow\left(x^2-8x\right)+\left(3x-24\right)=0\)
\(\Leftrightarrow x\left(x-8\right)+3\left(x-8\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)
a) \(x^2-9=2\left(x+3\right)^2\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)=2\left(x+3\right)^2\)
\(\Leftrightarrow2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[2\left(x+3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[2x+6-x+3\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+9\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+9=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)
b) \(x^2-8x+3x-24=0\)
\(\Leftrightarrow\left(x-8\right)x+3\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
c) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Cảm ơn em câu hỏi của em thật là thù vị. Về thắc mắc của em cô nghĩ chắc cũng có nhiều bạn đang muốn biết lắm ý nhỉ? Về vấn đề em hỏi cô xin trả lời như sau:
Tình theo a ở đây không phải là a mà mình tùy chọn em nhá. a ở đây là một ẩn a, em cứ tính độ dài của tam giác đó theo ẩn a thôi em ạ!
Vì ABC là tam giác đều nên đường cao cũng là đường trung tuyến của tam giác. Gọi AH là đường cao của tam giác thì
BH = HC = \(\dfrac{1}{2}\)a
Xét tam giác ACH vuông tại H. Theo pytago ta có:
AC2 = AH2 + HC2
⇒ AH2 = AC2 - HC2
⇒AH2 = a2 - (\(\dfrac{1}{2}\)a)2 = \(\dfrac{3}{4}\)a2
⇒ AH = \(\sqrt{\dfrac{3}{4}a^2}\) = \(\dfrac{3\sqrt{a}}{2}\)