K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

Cảm ơn em câu hỏi của em thật là thù vị. Về thắc mắc của em cô nghĩ chắc cũng có nhiều bạn đang muốn biết lắm ý nhỉ? Về vấn đề em hỏi cô xin trả lời như sau:

 Tình theo a ở đây không phải là a mà mình tùy chọn em nhá. a ở đây là một ẩn a, em cứ tính độ dài của tam giác đó theo ẩn a thôi em ạ!

                                        loading...

Vì ABC là tam giác đều nên đường cao cũng là đường trung tuyến của tam giác. Gọi AH là đường cao của tam giác thì

                       BH = HC =  \(\dfrac{1}{2}\)a

Xét tam giác ACH vuông tại H. Theo pytago ta có:

                AC2 = AH2 + HC2

               ⇒ AH2 = AC2 - HC2

               ⇒AH2 = a2 - (\(\dfrac{1}{2}\)a)2 = \(\dfrac{3}{4}\)a2

              ⇒ AH = \(\sqrt{\dfrac{3}{4}a^2}\) = \(\dfrac{3\sqrt{a}}{2}\) 

3 tháng 9 2023

\(\left(x^2+2\right).\left(x^2-3\right)\text{=}0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2\text{=}0\\x^2-3\text{=}0\end{matrix}\right.\)

\(TH1:x^2+2\text{=}0\)

Ta thấy : \(x^2\ge0\Rightarrow x^2+2\ge2>0\)

\(\Rightarrow ptvôN_o\)

\(TH2:x^2-3\text{=}0\)

\(\Leftrightarrow x^2\text{=}3\)

\(\Leftrightarrow\left[{}\begin{matrix}x\text{=}\sqrt{3}\\x\text{=}-\sqrt{3}\end{matrix}\right.\)

Vậy.........

3 tháng 9 2023

cần gấp!!!

 

 

 

3 tháng 9 2023

\(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

3 tháng 9 2023

\(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

3 tháng 9 2023

Cảm ơn em đã chia sẻ bài viết rất hay và bổ ích

3 tháng 9 2023

Cảm ơn bạn đã chia sẽ bài viết nhé. Mình sẽ áp dụng rất nhiều đó!

3 tháng 9 2023

\(\left(x-3\right)\left(x-5\right)-\left(x-4\right)^2\)

\(=x^2-5x-3x+15-\left(x^2-8x+16\right)\)

\(=x^2-5x-3x+15-x^2+8x-16\)

\(=x^2-x^2-8x+8x+15-16=-1\)

3 tháng 9 2023

(x - 3)(x - 5) - (x - 4)²

= x² - 5x - 3x + 15 - x² + 8x - 16

= (x² - x²) + (-5x - 3x + 8x) + (15 - 16)

= -1

3 tháng 9 2023

a, (\(x\) + y).(\(x\) + y)2 - 3\(xy\).(\(x\) + y) 

= (\(x+y\))3 - 3\(x^2\)y - 3\(xy^2\)

\(x^3\) + 3\(x^2\).y + 3\(xy^2\) + y3 - 3\(x^2\).y  - 3\(xy^2\)

\(x^3\) + y3 

3 tháng 9 2023

b, (\(x-y\)).(\(x-y\))2 - 3\(xy\).(\(x-y\)

=    (\(x\) - y)3 - 3\(x^2\).y + 3\(xy^2\)

\(x^3\) - 3\(x^2\)y + 3\(xy^2\) - y3 - 3\(x^2\)y + 3\(xy^2\)

\(x^3\) - 6\(x^2\)y + 6\(xy^2\) - y3

 

2 tháng 9 2023

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)

\(=n\left(2n^2+2n+n+1\right)\)

\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n-2+3\right)\)

\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)

Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)

Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)

Do đó: \(3n\left(n+1\right)⋮3\)

\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)

2 tháng 9 2023

\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)

\(=n\left(2n^2-3n+1\right)\)

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(2n-1\right)\)

\(=n\left(n-1\right)\left(2n+2-3\right)\)

\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)

\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\) 

Ta có :

\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)

\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)

Ta lại có :

\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)

\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)

\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)

1 tháng 9 2023

\(2x\left(x-1\right)-\left(1-x\right)^2=0\)

\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Để giải phương trình này, chúng ta có thể bắt đầu bằng cách mở ngoặc và rút gọn các thành phần. Hãy làm theo các bước sau: 1. Mở ngoặc: 2x(x-1) - (1-x)^2 = 0 => 2x^2 - 2x - (1 - 2x + x^2) = 0 2. Rút gọn các thành phần: 2x^2 - 2x - 1 + 2x - x^2 = 0 => x^2 - 1 = 0 3. Đưa phương trình về dạng chuẩn: x^2 = 1 4. Giải phương trình: - Nếu x^2 = 1, thì x có thể là 1 hoặc -1. Vậy, phương trình có hai nghiệm là x = 1 và x = -1.

1 tháng 9 2023

\(A=x-x^2-1\)

\(A=-\left(x^2-x+1\right)\)

\(A=-\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)

Và: \(-\dfrac{3}{4}< 0\)

\(\Rightarrow A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)

1 tháng 9 2023

c) \(x^2-9=2\cdot\left(x+3\right)^2\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)\left[x-3-2\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)

b) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

d) \(x^2-8x+3x-24=0\)

\(\Leftrightarrow\left(x^2-8x\right)+\left(3x-24\right)=0\)

\(\Leftrightarrow x\left(x-8\right)+3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)

1 tháng 9 2023

a) \(x^2-9=2\left(x+3\right)^2\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)=2\left(x+3\right)^2\)

\(\Leftrightarrow2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[2\left(x+3\right)-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left[2x+6-x+3\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+9\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+9=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)

b) \(x^2-8x+3x-24=0\)

\(\Leftrightarrow\left(x-8\right)x+3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

c) \(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)