Gọi a, b, c là độ dài 3 cạnh của ΔABC. Biết \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=8\). C/m ΔABC đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)
\(\Rightarrow\frac{3x^2-15x-x^2+2x+9x}{x^2-7x+10}=10\)
\(\Rightarrow\frac{2x^2-4x}{x^2-7x+10}=10\)
\(\Rightarrow2x^2-4x=10x^2-70x+100\)
\(\Rightarrow8x^2-66x+100=0\)
Ta có \(\Delta=66^2-4.8.100=1156,\sqrt{\Delta}=34\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{66+34}{16}=\frac{25}{4}\\x=\frac{66-34}{16}=2\end{cases}}\)
a) \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)
<=> \(\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\frac{9x}{\left(x-2\right)\left(x-5\right)}=10\)
<=> \(\frac{3x^2-15x-x^2+2x+9x}{\left(x-5\right)\left(x-2\right)}=10\)
<=> \(\frac{2x^2-4x}{\left(x-5\right)\left(x-2\right)}=10\)
<=> \(\frac{2x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}=10\)
<=> \(2x=10\left(x-5\right)\)
<=> 2x - 10x = -50
<=> -8x = -50
<=>x = 6,25
Vậy S = {6,25}
b) (x - 7)(x - 2)(x - 4)(x - 5) = 72
<=> (x2 - 9x + 14)(x2 - 9x + 20) = 72
Đặt x2 - 9x + 14 = t <=> t(t + 6) = 72
<=> t2 + 6t - 72 = 0
<=> t2 + 12t - 6t - 72 = 0
<=> (t + 12)(t - 6) = 0
<=> \(\orbr{\begin{cases}t+12=0\\t-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2-9x+14+12=0\\x^2-9x+14-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-9x+20,25\right)+5,75=0\\x^2-9x+8=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-4,5\right)^2+5,75=0\left(vn\right)\\x^2-x-8x+8=0\end{cases}}\)
<=> (x - 1)(x - 8) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=8\end{cases}}\)
Vậy S = {1; 8}
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
\(\left(2.x+1\right)^2=\left(3.x-5\right)^2\)
\(\Leftrightarrow4.x+4.x+1=9.x^2-30.x+25\)
\(\Leftrightarrow4.x+4.x+1-9.x^2+30.x-25=0\)
\(\Leftrightarrow-5.x^2+34-24=0\)
\(\Leftrightarrow5.x^2-34.x+24=0\)
\(\Leftrightarrow5.x^2-4.x-30.x+24=0\)
\(\Leftrightarrow x.\left(5.x-4\right)-6.\left(5.x-4\right)=0\)
\(\Leftrightarrow\left(5.x-4\right).\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5.x-4=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=6\end{cases}}}\)
Vậy \(x=\left\{\frac{4}{5};6\right\}\)
\(\left(2x+1\right)^2=\left(3x-5\right)^2\)
\(\Rightarrow2x+1=3x-5\)
\(\Rightarrow1+5=3x-2x\)
\(\Rightarrow6=x\)
Vậy x=6
Chúc bn học tốt
\(A=2x^2+3x\)
\(=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{3}{2\sqrt{2}}+\frac{9}{8}-\frac{9}{8}\)
\(=\left(\sqrt{2}x+\frac{3}{2\sqrt{2}}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu "=" khi \(x=\frac{-3}{4}\)
\(B=-x^2-3x+2=-\left(x^2+3x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=-\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)
Dấu "=" khi \(x=-\frac{3}{2}\)
\(\left(x-4\right)\left(3x+2\right)=\left(5x-3\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)-\left(5x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(-2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\-2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{5}{2}\end{cases}}\)
(2x+1)(3x-2)=(5x-8)(2x+1)
<=> (2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
<=>2x+1=0 hoặc 6-2x=0
<=>x=-1/2 hoặc x=3
Vậy phương trình có tập nghiệm S={-1/2;3}
(2x+1)(3x-2)=(5x-8)(2x+1)
<=> (2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
<=>2x+1=0 hoặc 6-2x=0
<=>x=\(-\frac{1}{2}\) hoặc x=3
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{2};3\right\}\)
Ta có:
(1 + b/a)(1 + c/b)(1 + a/c) = 8
<=> (a + b)/a.(b + c)/b.(c + a)/c = 8
<=> (a + b)(b + c)(c + a) = 8abc
Áp dụng bất đẳng thức Cauchy cho các số dương a, b, c ta được:
a + b ≥ 2√(ab)
b + c ≥ 2√(bc)
c + a ≥ 2√(ca)
=> (a + b)(b + c)(c + a) ≥ 8√(a^2.b^2.c^2) = 8|abc| = 8abc (vì a, b,c > 0)
Dấu "=" xảy ra <=> a = b; b = c; c = a <=> a = b = c <=> ΔABC đều
https://olm.vn/hoi-dap/detail/2293581520.html cậu tham khảo nhé !