Một con kiến bò dọc theo trục chính của một thấu kính hội tụ có tiêu cự f=20cm. Biết thời điểm bắt đầu khảo sát con kiến ở vị trí A cách quang tâm O của thấu kính một đoạn OA=50cm, coi tốc độ của con kiến là v=2cm/s và không đổi trong quá trình chuyển động. Tính tốc độ trung bình của ảnh con kiến qua thấu kính trên trong thời gian 5s đầu tiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}x\left(x-3y\right)=4\left(y^2+2\right)\left(1\right)\\\left(xy-4\right)\left(x+y\right)=8\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Rightarrow xy-4;x+y\ne0\)
\(\left(1\right)\Leftrightarrow x^2-3xy-4y^2=8\) (*)
Từ (*) và (2) \(\Rightarrow x^2-3xy-4y^2=\left(xy-4\right)\left(x+y\right)\)
\(\Leftrightarrow x\left(x-4y\right)+y\left(x-4y\right)=\left(xy-4\right)\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x-4y\right)=\left(x+y\right)\left(xy-4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\left(L\right)\\x-4y=xy-4\end{matrix}\right.\) \(\Leftrightarrow x\left(1-y\right)+4\left(1-y\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
x = -4 thay vào (*), ta được: \(16-3.\left(-4\right)y-4y^2=8\)
\(\Leftrightarrow8+12y-4y^2=0\) \(\Leftrightarrow y^2-3y-2=0\)
\(\Leftrightarrow y=\dfrac{3\pm\sqrt{17}}{2}\) ( dùng \(\Delta\) )
y=1 thay vào (*), ta được: \(x^2-3x-4=8\)
\(\Leftrightarrow x^2-3x-12=0\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt{57}}{2}\)
Vậy ...
Nếu bạn không dùng đến điểm O thì theo mình nghĩ sẽ không sao bạn nhé! Tuy nhiên để giải toán chắc chắn và chính xác chúng mình nên vẽ hình theo dữ kiện đề bài cho!
- Ở thời điểm ban đầu, con kiến ở vị trí A có khoảng cách tới thấu kính là OA = d = 50 cm. Gọi khoảng cách từ ảnh A' đến quang tâm là OA' = d'.
Áp dụng công thức thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)
\(\dfrac{1}{20}=\dfrac{1}{50}+\dfrac{1}{d'}\)
\(\rightarrow d'=\dfrac{100}{3}\) cm.
- Sau 5 s, con kiến đi tới vị trí B cách A một khoảng S = AB = v.t = 2.5 = 10 cm.
Khoảng cách từ B đến thấu kính là OB = d2 = OA - AB = 50 - 10 = 40 cm. Gọi vị trí từ ảnh B' đến thấu kính là OB' = d2'.
Áp dụng công thức thấu kính ta có:
\(\dfrac{1}{f}=\dfrac{1}{d_2}+\dfrac{1}{d_2'}\)
\(\dfrac{1}{20}=\dfrac{1}{40}+\dfrac{1}{d_2'}\)
\(\rightarrow d_2'=40\) cm.
- Trong 5 s, ảnh của con kiến di chuyển một khoảng là
\(\Delta s=OB'-OA'=d_2'-d'=40-\dfrac{100}{3}=\dfrac{20}{3}\) cm.
Tốc độ trung bình của ảnh con kiến qua thấu kính trong 5 s đầu tiên là
\(v'=\dfrac{\Delta s}{t}=\dfrac{\dfrac{20}{3}}{5}\)
\(v'=\dfrac{4}{3}\) cm/s.
Nhờ mọi người giải giúp