Cho phương trình: x^2 - m^2x + 2m + 2 = 0. Tìm m ∈ Z để phương trình có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M N P H
Không mất tính tổng quát g/s: MN<MP => NH=7 ; HP=12
Ta có:
\(NP=NH+HP=7+12=19\)
\(MP^2=HP.NP=12.19=228\Rightarrow MP=2\sqrt{57}\)
\(NM^2=NH.NP=7.19=133\Rightarrow NM=\sqrt{133}\)
Vậy
\(\Sigma\frac{1}{6+a}\ge\frac{1}{2}\)
\(\Rightarrow\frac{1}{6+a}\ge\left(\frac{1}{6}-\frac{1}{6+b}\right)+\left(\frac{1}{6}-\frac{1}{6+c}\right)+\left(\frac{1}{6}-\frac{1}{6+d}\right)\)
\(=\frac{b}{6\left(6+b\right)}+\frac{c}{6\left(6+c\right)}+\frac{d}{6\left(6+d\right)}\ge3\sqrt[3]{\frac{bcd}{6\left(6+b\right).6\left(6+c\right).6\left(6+d\right)}}\)
\(=\frac{1}{2}\sqrt[3]{\frac{bcd}{\left(6+b\right)\left(6+c\right)\left(6+d\right)}}\)
tương tự \(\frac{1}{6+b}\ge\frac{1}{2}\sqrt[3]{\frac{acd}{\left(6+a\right)\left(6+c\right)\left(6+d\right)}}\)
\(\frac{1}{6+c}\ge\frac{1}{2}\sqrt[3]{\frac{abd}{\left(6+a\right)\left(6+b\right)\left(6+d\right)}}\)
\(\frac{1}{6+d}\ge\frac{1}{2}\sqrt[3]{\frac{abc}{\left(6+a\right)\left(6+b\right)\left(6+c\right)}}\)
Nhân các vế lại với nhau đc
\(\frac{1}{\left(6+a\right)\left(6+b\right)\left(6+c\right)\left(6+d\right)}\ge\frac{1}{16}.\sqrt[3]{\left(\frac{abcd}{\left(6+a\right)\left(6+b\right)\left(6+c\right)\left(6+d\right)}\right)^3}\)
\(\Rightarrow\frac{abcd}{16}\le1\)
\(\Rightarrow abcd\le16\)
Dấu "=" tại a = b = c = d = 2
Cái này không LATEX đc, đề là:
Tìm tất cả số nguyên dương n thỏa mãn:
\2^n+n|8^n+n\
Hệ phương trình tương đương \(\hept{\begin{cases}4x^2+2y^2-8x+4y=2\\3x^2-2y^2-6x-4y=5\end{cases}}\)
Cộng vế theo vế ta có phương trình:
\(7x^2-14x=7\Leftrightarrow7x^2-14x-7=0\)
a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)
Xét \(\Delta\)AHD và \(\Delta\)FHA có:
\(\widehat{AHD}=\widehat{FHA}=90^o\)
\(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)
\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)
\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)
mà \(\widehat{ADH}+\widehat{HAD}=90^o\)
nên \(\widehat{FAH}+\widehat{HAD}=90^o\)
hay \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A
b)\(\sqrt{17-12\sqrt{2}}\)
=\(\sqrt{9-2.3.2\sqrt{2}+8}\)
=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(3-2\sqrt{2}\)
Câu 1. Biến đổi biểu thức trong căn thành một bình phương một tổng hay một hiệu rồi từ đó phá bớt một lớp căn
a/\(\sqrt{41+12\sqrt{5}}\)