Cho x,y,z >0 thỏa mãn x+y+z=3 Tìm min A = \(\frac{x+y}{xyz}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=3-\sqrt{5}=\frac{1}{2}.\left(6-2\sqrt{5}\right)\)\(=\frac{1}{2}.\left(\sqrt{5}-1\right)^2\)
\(\Rightarrow x>0\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{1}{2}.\left(\sqrt{5}-1\right)^2}\)\(=\frac{\left|\sqrt{5}-1\right|}{\sqrt{2}}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{2}\)\(=\frac{\sqrt{10}-\sqrt{2}}{2}\)
Thay \(x=3-\sqrt{5};\sqrt{x}=\frac{\sqrt{10}-\sqrt{2}}{2}\)vào A ta được:
\(A=3-\sqrt{5}-2-\frac{\sqrt{10}-\sqrt{2}}{2}\)\(=\frac{6-2\sqrt{5}-4-\sqrt{10}+\sqrt{2}}{2}\)\(=\frac{2+\sqrt{2}-\sqrt{10}+2\sqrt{5}}{2}\)
\(x^2+\left(m-2\right)x-8=0\)
\(\Delta=b^2-4ac=\left(m-2\right)^2-4.1.\left(-8\right)=\left(m-2\right)^2+32\)
Vì \(\left(m-2\right)^2\ge0\forall m\)
\(\Rightarrow\left(m-2\right)^2+32\ge32>0\forall m\)
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m
Theo định lí vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=2-m\\x_1x_2=\frac{c}{a}=-8\end{cases}}\Rightarrow x_2=\frac{-8}{x_1}\)
Theo bài ra ta có:\(A=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\frac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\frac{16}{x_1^2}\right)\le68-4.8=36\)
Dấu "=" xảy ra <=> \(x_1=\pm2\)
+Với \(x_1=2\Rightarrow m=4\)
+Với \(x_1=-2\Rightarrow m=0\)
Vậy \(A=\left(x_1^2-1\right)\left(x_2^2-4\right)\)đạt GTLN là 36 \(\Leftrightarrow m=0;m=4\)
Thay x =\(3-\sqrt{5}\) ta có:
\(A=3-\sqrt{5}-2-\sqrt{3-\sqrt{5}}\)
\(A=1-\sqrt{5}-\sqrt{3-\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{2}\left(1-\sqrt{5}\right)+\sqrt{5}-1\)
\(\sqrt{2}A=\left(1-\sqrt{5}\right)\left(\sqrt{2}-1\right)\)
\(A=\frac{\left(1-\sqrt{5}\right)\left(\sqrt{2}-1\right)}{\sqrt{2}}\)
\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=x^2+1-x^2=1\)
\(\Rightarrow y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)(1)
Tương tự \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)(2)
Lấy (1) + (2) đc x + y = -x - y
<=> 2(x + y) = 0
<=> x + y = 0
Câu 1:
a,Bạn tự vẽ
b,Phương trình hoành độ giao điểm của (d1) và (d2) là:
\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)
\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)
Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)
c,Đường thẳng (d3) có dạng: y = ax + b
Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)
Khi đó (d3) có dạng: y = -2x + b
Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)
Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)
Vậy (d3) có phương trình: y = -2x - 3
Câu 2:
\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)
\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)
\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)
\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)
\(\(\(=a-b\)\)\)
Ta có \(3=x+y+z=x+y+\frac{z}{2}+\frac{z}{2}\ge4\sqrt[4]{x.y.\frac{z^2}{4}}\)
=> \(xyz^2\le\frac{81}{64}\)
\(A=\frac{x+y}{xyz}\ge\frac{2\sqrt{xy}}{xyz}=\frac{2}{\sqrt{xyz^2}}\ge\frac{2}{\sqrt{\frac{81}{64}}}=\frac{16}{9}\)
MinA=16/9 khi \(x=y=\frac{3}{4};z=\frac{3}{2}\)