tìm 2 số TN a,b,c sao cho tổng của tích, thương, hiệu của chúng =2000 và a<b,a+b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py ta go cho tam giác ABC ta được :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow5^2+AC^2=13^2\Leftrightarrow AC^2=13^2-5^2=144\Leftrightarrow AC=12\)cm
Ta có \(\frac{y+z-x}{x}=\frac{x+z-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z-x}{x}+2=\frac{x+z-y}{y}+2=\frac{x+y-z}{z}+2\)
=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Khi x + y + z = 0
=> x + y = -z
x + z = -y
y + z = -x
Khi đó B = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
Khi x + y + z \(\ne\)0
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Khi đó B = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi x + y + z = 0 => B = -1
khi x + y + z \(\ne\)0 =>B = 8
Sai đề rồi phải là kẻ \(AH\perp BC\left(H\in BC\right)\) nhé!
A B C H E F
a) Xét 2 Δ vuông: Δ AHB = Δ AHC (c.h-g.n) vì:
\(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{ACB}=\widehat{ABC}\left(gt\right)\end{cases}}\)
=> \(BH=HC\)
b) Xét 2 Δ vuông: Δ BHF = Δ CHE (c.h-g.n) vì:
\(\hept{\begin{cases}HB=HC\left(p.a\right)\\\widehat{HBF}=\widehat{HCE}\left(gt\right)\end{cases}}\)
=> \(HE=HF\) => Tam giác HEF cân tại H