K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

Cm: \(\forall\)\(x\in\) N ta có: (n + 45).(4n2 -1) ⋮ 3

Trong biểu thức không hề chứa \(x\) em nhá

Biểu thức chứa \(x\) là biểu thức nào thế em?

16 tháng 9 2023

Bài này em nghĩ là phải sửa thành với mọi \(n\inℕ\) ạ.

Đặt \(P=\left(n+45\right)\left(4n^2-1\right)\)

Với \(n⋮3\) thì hiển nhiên \(n+45⋮3\), suy ra \(P⋮3\) 

Với \(n⋮̸3\) thì \(n^2\equiv1\left[3\right]\) nên \(4n^2\equiv1\left[3\right]\) hay \(4n^2-1⋮3\), suy ra \(P⋮3\)

Vậy, với mọi \(n\inℕ\) thì \(\left(n+45\right)\left(4n^2-1\right)⋮3\) (đpcm)

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Yêu cầu đề bài là gì vậy bạn?

16 tháng 9 2023

Mỗi đơn thức được coi là một đa thức 

Vậy 4\(xy^3\) là một đa thức là đúng em nhá 

16 tháng 9 2023

   (2\(x^3\) - 2\(xy\)) - (\(x^2\) +5\(xy\) - \(x^2\) - \(x^3\))

= 2\(x^3\) - 2\(xy\) - (5\(xy\) - \(x^3\))

= 2\(x^3\) - 2\(xy\) - 5\(xy\) + \(x^3\)

= 3\(x^3\) - 7\(xy\)

 

15 tháng 9 2023

\(x^4\)-2x\(^3\)+3x\(^2\)-2x+2

=(\(x^4\)-2x\(^3\)+x\(^2\))+(2x\(^2\)-2x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+1+1

=(x\(^2\)-x+1)\(^2\)+1

=[x\(^2\)-2.x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)]\(^2\)+1

=[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1

Ta có:(x-\(\dfrac{1}{2}\))\(^2\)\(\ge0\)

=>(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)\(\ge\dfrac{3}{4}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2\(\ge\dfrac{9}{16}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1\(\ge\dfrac{9}{16}+1\)=\(\dfrac{25}{16}\)

Vậy Min F(x)=\(\dfrac{25}{16}\)khi x-\(\dfrac{1}{2}\)=0=>x=\(\dfrac{1}{2}\)

 

       
15 tháng 9 2023

thắc mắc j hỏi mik nha

16 tháng 9 2023

Bài này em nên đi theo hướng giải theo delta

15 tháng 9 2023

`x(x+1)=x+5`

`<=>x^{2}+x-x-5=0`

`<=>x^{2}-5=0`

`<=>x^{2}=5`

`<=>x=`\(\pm \sqrt{5}\)

15 tháng 9 2023

\(x\left(x+1\right)=x+5\)

\(x^2+x=x+5\)

\(\Rightarrow x^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

 

15 tháng 9 2023

\(A=7x^3y-\dfrac{1}{2}xy-4x^3-5x-2+5xy\)

\(=7x^3y+\left(5-\dfrac{1}{2}\right)xy-4x^3-5x-2\)

\(=7x^3y+4,5xy-4x^3-5x-2\)

Đa thức A có Bậc 4.

\(B=-\dfrac{4}{3}xyz-\dfrac{1}{3}xy^2x+4-5xyz+3x^2y^2\)

\(=-\left(\dfrac{4}{3}+5\right)xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)

\(=-\dfrac{19}{3}xyz-\dfrac{1}{3}xy^2z+3x^2y^2+4\)

Đa thức B có Bậc 4.

 

15 tháng 9 2023

a) x³ - 64x = 0

x(x² - 64) = 0

x(x - 8)(x + 8) = 0

x = 0 hoặc x - 8 = 0 hoặc x + 8 = 0

*) x - 8 = 0

x = 8

*) x + 8 = 0

x = -8

Vậy x = -8; x = 0; x = 8

b) x³ - 4x² = -4x

x³ - 4x² + 4x = 0

x(x² - 4x + 4) = 0

x(x - 2)² = 0

x = 0 hoặc (x - 2)² = 0

*) (x - 2)² = 0

x - 2 = 0

x = 2

Vậy x = 0; x = 2

c) x² - 16 - (x - 4) = 0

(x - 4)(x + 4) - (x - 4) = 0

(x - 4)(x + 4 - 1) = 0

(x - 4)(x + 3) = 0

x - 4 = 0 hoặc x + 3 = 0

*) x - 4 = 0

x = 4

*) x + 3 = 0

x = -3

Vậy x = -3; x = 4

d) (2x + 1)² = (3 + x)²

(2x + 1)² - (3 + x)² = 0

(2x + 1 - 3 - x)(2x + 1 + 3 + x) = 0

(x - 2)(3x + 4) = 0

x - 2 = 0 hoặc 3x + 4 = 0

*) x - 2 = 0

x = 2

*) 3x + 4 = 0

3x = -4

x = -4/3

Vậy x = -4/3; x = 2

e) x³ - 6x² + 12x - 8 = 0

(x - 2)³ = 0

x - 2 = 0

x = 2

f) x³ - 7x - 6 = 0

x³ + 2x² - 2x² - 4x - 3x - 6 = 0

(x³ + 2x²) - (2x² + 4x) - (3x + 6) = 0

x²(x + 2) - 2x(x + 2) - 3(x + 2) = 0

(x + 2)(x² - 2x - 3) = 0

(x + 2)(x² + x - 3x - 3) = 0

(x + 2)[(x² + x) - (3x + 3)] = 0

(x + 2)[x(x + 1) - 3(x + 1)] = 0

(x + 2)(x + 1)(x - 3) = 0

x + 2 = 0 hoặc x + 1 = 0 hoặc x - 3 = 0

*) x + 2 = 0

x = -2

*) x + 1 = 0

x = -1

*) x - 3 = 0

x = 3

Vậy x = -1; x = -1; x = 3

Dòng cuối kết luận phải là \(\text{x }\in\text{ }\left\{-2;-1;3\right\}\) chứ ạ?