Cho (d): y = \(\frac{m+1}{m-1}.x+1\) và (d'): y = x + m
a) Tìm m để (d) đi qua (1;2)
b) Tìm m để (d) // (d')
c) Tìm m để (d') đi qua (1;1)
d) Tìm m để (d) vuông góc với (d')
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét nào:)
Từ giả thiết suy ra x + y + z > 3
Ta có: \(P=2x^2+xy+2y^2=\frac{5}{4}\left(x+y\right)^2+\frac{3}{4}\left(x-y\right)^2\ge\frac{5}{4}\left(x+y\right)^2\)
Suy ra \(\sqrt{2x^2+xy+y^2}\ge\sqrt{\frac{5}{4}}.\left(x+y\right)=\frac{\sqrt{5}}{2}\left(x+y\right)\)
Tương tự hai BĐT còn lại và cộng theo vế: \(P\ge\sqrt{5}\left(x+y+z\right)\ge3\sqrt{5}\)
Đẳng thức xảy ra khi x = y = z = 1
Is it right?!?
\(C=\frac{m^2-4m+4}{m-2}+\frac{m-7}{m-2}=\frac{\left(m-2\right)^2}{m-2}+\frac{m-2}{m-2}-\frac{5}{m-2}=m-2+1-\frac{5}{m-2}=m-1-\frac{5}{m-2}\)
để C nguyên thì \(\frac{5}{m-2}\)nguyên
=>m-2 thuộc ước của 5
( đến đây bạn tự giải)
\(HB.HC=15^2=225\)
Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)
a) Vô nghiệm
b) vô nghiệm
c)m=0
d)m=0