viết kết quả dưới dạng luỹ thừa
a) 25.43:82
b) 39:272 x 243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^x-3^{x-1}=54\)
=>\(3^x-\dfrac{1}{3}\cdot3^x=54\)
=>\(\dfrac{2}{3}\cdot3^x=54\)
=>\(3^x=54:\dfrac{2}{3}=81=3^4\)
=>x=4
\(2+2^2+2^3+2^4+...+2^9+2^{10}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^3+...+2^9\right)⋮3\)
Số số hạng của dãy số A là:
\(\dfrac{199-1}{2}+1=\dfrac{198}{2}+1=100\left(số\right)\)
Tổng của dãy số A là:
\(\left(1+199\right)\cdot\dfrac{100}{2}=100^2=10000\)
Số số hạng của dãy số B là:
\(\dfrac{999-100}{1}+1=899+1=900\left(số\right)\)
Tổng của dãy số là: \(B=\left(999+100\right)\cdot\dfrac{900}{2}=494550\)
\(A+B=10000+494550=504550\)
\(C=\dfrac{5}{28}+\dfrac{1}{14}+\dfrac{1}{26}+...+\dfrac{1}{638}\)
\(=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{3190}\)
\(=\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot10}+...+\dfrac{5}{55\cdot58}\)
\(=\dfrac{5}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{55\cdot58}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{55}-\dfrac{1}{58}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{58}\right)=\dfrac{5}{3}\cdot\dfrac{27}{116}=\dfrac{5\cdot9}{116}=\dfrac{45}{116}\)
\(C=\dfrac{5}{28}+\dfrac{1}{14}+\dfrac{1}{26}+...+\dfrac{1}{638}\\ =\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+...+\dfrac{5}{3190}\\ =\dfrac{5}{4\cdot7}+\dfrac{5}{7\cdot10}+\dfrac{5}{10\cdot13}+...+\dfrac{5}{55\cdot58}\\ =\dfrac{5}{3}\cdot\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{55\cdot58}\right)\\ =\dfrac{5}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-...-\dfrac{1}{55}+\dfrac{1}{55}-\dfrac{1}{58}\right)\\ =\dfrac{5}{3}\cdot\left(\dfrac{1}{4}-\dfrac{1}{58}\right)\\ =\dfrac{5}{3}\cdot\dfrac{27}{116}\\ =\dfrac{45}{116}\)
1: \(1935⋮5;540⋮5;270⋮5\)
Do đó: \(1935-540+270⋮5\)
\(1935⋮9;540⋮9;270⋮9\)
Do đó: \(1935-540+270⋮9\)
2: \(5^{3x-1}-5^{2x+1}=0\)
=>\(5^{3x-1}=5^{2x+1}\)
=>3x-1=2x+1
=>3x-2x=1+1
=>x=2
y chia 19 được thương là 20, dư là 8
=>\(y=19\cdot20+8=380+8=388\)
\(\left(2x+1\right)^3=125\\ \Rightarrow\left(2x+1\right)^3=5^3\\ \Rightarrow2x+1=5\\ \Rightarrow2x=5-1\\ \Rightarrow2x=4\\ \Rightarrow x=4:2\\ \Rightarrow x=2\)
\(\left(2x+1\right)^3=125\)
=>\(\left(2x+1\right)^3=5^3\)
=>2x+1=5
=>2x=5-1=4
=>\(x=\dfrac{4}{2}=2\)
Để `5n+22 \vdots n+3,` ta có:
`5n +22 \vdots n+3`
`=> 5n + 15 + 7 \vdots n + 3`
`=> 5 (n + 3) + 7 \vdots n + 3`
Vì:: `5 ( n + 3)\vdots n + 3 -> n + 3 in Ư(7)={+-1;+-7}`
`=> n = {-2;-4;4;-10}`
Vậy: `n = {-2;-4;4;-10}` thì `5n + 22 \vdots n+3`
\(5n+22⋮n+3\\ \Leftrightarrow5n+15+7⋮n+3\\ \Leftrightarrow7⋮n+3\text{ }\left(\text{Vì 5n + 14 ⋮ n + 3}\right)\\ \Leftrightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n+3=1\\n+3=-1\\n+3=7\\n+3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-2\\n=-4\\n=4\\n=-10\end{matrix}\right.\)
Vậy \(n\in\left\{-2;-4;4;-10\right\}\)
Cách 1:
\(D=\left\{0;4;8;12;16;20\right\}\)
Cách 2:
\(D=\left\{x\in N|x⋮4,x< 21\right\}\)
a: \(2^5\cdot4^3:8^2=2^5\cdot2^6:2^6=2^5\)
b: \(3^9:27^2\cdot243=3^9:3^6\cdot3^5=3^8\)