a/ Rút gọn biểu thức A =\(\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right):\left(1-\frac{2\sqrt{x}}{x+1}\right)\)
b/ Tìm x để P<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì \(\Delta\)ABC đều nên AB = BC = CA => A là điểm chính giữa cung lớn BC của (O)
=> ^BMA = ^CMA (=600). Kết hợp với ^MCB = ^MAB suy ra \(\Delta\)MDC ~ \(\Delta\)MBA (g.g)
=> \(MB.MC=MD.MA\) => \(MD=\frac{MB.MC}{MA}\le\frac{\left(MB+MC\right)^2}{4MA}\)
Mặt khác, theo ĐL Ptolemy: \(MB.AC+MC.AB=AM.BC\)=> \(MB+MC=MA\)(BC=CA=AB)
Do đó \(MD\le\frac{MA^2}{4MA}=\frac{MA}{4}\le\frac{2R}{4}=\frac{R}{2}\)(Vì AM là một dây của (O))
Dấu "=" xảy ra khi và chỉ khi AM là đường kính của (O). Vậy Max MD = R/2.
2) Ta thấy ^CMA = 600 = ^CAB. Từ đây \(\Delta\)ACM ~ \(\Delta\)KCA (g.g)
=> CA2 = CM.CK hay CB2 = CM.CK => \(\Delta\)CBM ~ \(\Delta\)CKB (c.g.c)
=> ^CBM = ^BKM => BC là tiếp tuyến của đường tròn (BKM) (đpcm).
Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\) (*) (Vì a,b,c > 0)
Áp dụng BĐT Cauchy ta có:
\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)
Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)
Từ đó, kết hợp với (*) suy ra:
\(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)