cho a, b, c>0 và abc=1. tìm giá trị nhỏ nhất A= \(\frac{ab}{2b+c}+\frac{bc}{2c+a}+\frac{ca}{2a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, 2(x+1)-1=3-(1-2x)
2x+2-1=2-1+2x
2x-2x=2-1-2+1
0x=0
Vậy không tồn tại giá trị của x thỏa mãn đề bài
3, (3x+5)(2x-7)=0
\(\orbr{\begin{cases}3x+5=0\\2x-7=0\end{cases}}\)
\(\orbr{\begin{cases}3x=0-5=-5\\2x=0+7=7\end{cases}}\)
\(\orbr{\begin{cases}x=\left(-5\right):3\\x=7:2=3,5\end{cases}}\)Vô lí
Vậy x=3,5
P = 3x/(x(x + 5)) > 0
<=> 3/(x + 5) > 0
<=> 3 = 0 (vô lý)
=> vô nghiệm
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left(1-x\right)\left(1+x-x-3\right)=0\)
\(\Leftrightarrow x^2-2x+1+2\left(1-x\right)=0\)
\(\Leftrightarrow x^2-2x+1+2-2x=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
1) (2x^2 + 1)(x^2 - 2x - 1)
= 2x^4 - 4x^3 - 2x^2 + x^2 - 2x - 1
= 2x^4 - 4x^3 - x^2 - 2x - 1
2) (x^2 - x^4)/(x^2 - 1 + 1)
= (x^2.(1 - x^2))/(x^2 - 1 + 1)
= (x^2.(1 + x)(1 - x))/x^2
= (1 + x)(1 - x)
3) (3x + y)^3 + x^3 - 3x^2 + 3x + 1
Thay x = 1,1; y = -0,7 vào biểu thức, ta có:
= [3.1,1 + (-0,7)]^3 + 1,1^3 - 3.1,1^2 + 3.1,1 + 1
= 19,577
a) thay x = -3 vào biểu thức, ta có:
\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)
b) M = A.B
\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)
\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)
\(M=-\frac{3.\frac{8}{x+2}}{2}\)
\(M=-\frac{\frac{24}{x+2}}{2}\)
\(M=-\frac{24}{2\left(x+2\right)}\)
\(M=-\frac{12}{x+2}\)