giải PT sau:
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) y/(y + 2) - 3/(y - 2) = (y^2 + 8)/(y^2 - 4)
<=> y/(y + 2) - 3/(y - 2) = (y^2 + 8)/((y - 2)(y + 2))
<=> y(y - 2) - 3(y + 2) = y^2 + 8
<=> y^2 - 2y - 3y - 6 = y^2 + 8
<=> y^2 - 5y - 6 = y^2 + 8
<=> -5y - 6 = 8
<=> -5y = 8 + 6
<=> -5y = 14
<=> y = -14/5
2) 7/(2x - 3) + 1/(2x - 2) = 3/(x - 1)
<=> 14(x - 1) + 2x - 3 = 6(2x - 3)
<=> 14x - 14 + 2x - 3 = 12x - 18
<=> 16x - 17 = 12x - 18
<=> 16x - 17 - 12x = -18
<=> 4x - 17 = -18
<=> 4x = -18 + 17
<=> 4x = -1
<=> x = -1/4
a)\(6y\left(y-1\right)=y-1\)
\(6y=\frac{y-1}{y-1}\)
\(6y=1\)
\(y=\frac{1}{6}\)
b) \(2\left(y+5\right)-y^2-5y=0\)
\(2y+10-y^2-5y=0\)
\(y\left(2-y-5\right)+10=0\)
\(y\left(-3-y\right)=-10\)
\(-3y-2y=-10\)
\(-5y=-10\)
\(y=2\)
c) \(y^3+y=0\)
\(y\left(y^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y^2=-1\left(vl\right)\end{cases}}}\)
hok tốt!!
Giải pt (1) :(x+3)(2x+1)=0
=>{x+3=0 / {2x+1=0
=> {x=-3 / {x=-1/2
Để hai pt tương đương thì pt (2) nhận giá trị x=-3 và x=-1/2 .
+)Thay x=-3 vào pt (2) :
(m-4)(-3)^2 - 2(2m+9)(-3) -4 =0
=> (m-4)9 + 6(2m+9) - 4 = 0
=> 9m - 36+ 12m + 54 - 4= 0
=> 21m + 14 = 0
=> 21m = -14
=> m= -2/3
Vậy ...
+) Thay x= -1/2 vào pt (2) :
(m-4)(-1/2)^2 - 2(2m+9)(-1/2) -4 =0
=>1/4(m-4) + 2m +9 - 4 = 0
=>1/4m -1 +2m +9 - 4 =0
=>9/4m +4 =0
=>9/4m = -4
=>m =-16/9
Vậy ...
\(A=\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\left(x\ne0;x\ne\pm2\right)\)
\(A=\frac{2x^2+4x}{x\left(x^2-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}-\frac{2}{x-2}\)
\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x\left(x+2\right)+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x+8}{x\left(x-2\right)}\)
Vậy \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)
b) \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)
Ta có: x=4 (tmđk) thay vào A ta có:
\(A=\frac{-2\cdot4+8}{4\left(4-2\right)}=\frac{-8+8}{4\cdot2}=\frac{0}{8}=0\)
Vậy A=0 với x=4
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x};x\ne2;x\ne0\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x^2-2x}=0\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\times\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\times\left(x+2\right)-\left(x-2\right)-2}{x\times\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\times\left(x+2\right)-x+2-2}{x\times\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x^2+x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x+1}{x-2}=0\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)