Cho phương trình:
a,mx2+2(m-4)x+m+7=0
Tìm m để x1-2x2=0
b, x2+(m-1)x+5m-6=0
Tìm m để 4x1+3x2=1
c,3x2-(3m-2)x-(3m+1)=0
TÌm m để 3x1-5x2=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=m+2$
$x_1x_2=m-1$
$\Rightarrow x_1+x_2-x_1x_2=(m+2)-(m-1)=3$
$\Leftrightarrow x_1+x_2-x_1x_2-3=0$ (đây chính là biểu thức liên hệ giữa $x_1,x_2$ mà không phụ thuộc vào $m$)
b.
$x_1+x_2=-(4m+1)$
$x_1x_2=2(m-4)$
$\Rightarrow x_1+x_2+2x_1x_2=-(4m+1)+4(m-4)=-17$
$\Rightarrow x_1+x_2+2x_1x_2+17=0$
a)
\(m=6\)
\(\Rightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
b)
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow x_1^2=2x_1x_2+x^2_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
Mà \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1-x_2=m\end{matrix}\right.\)
\(\Rightarrow25-4m=9\)
\(\Leftrightarrow4m=16\)
\(\Leftrightarrow m=4\)
- Gọi \(x_1,x_3,x_5...,x_{999}\) lần lượt là các giá trị được gắn với mỗi điểm màu xanh.
\(x_2,x_4,x_6,...x_{1000}\) lần lượt là các giá trị được gắn với mỗi điểm màu đỏ.
Giả sử điểm được gắn giá trị \(x_1\)(tạm gọi là \(đ_1\)) xen kẽ với \(đ_{1000},đ_2\) ; \(đ_2\) xen kẽ với \(đ_1,đ_3\) ; ... ; \(đ_{1000}\) xen kẽ với \(đ_{999}\) và \(đ_1\).
Ta có: \(x_3=x_2+x_4\).Mà \(x_2=x_1x_3;x_4=x_3x_5\)
\(\Rightarrow x_3=x_1x_3+x_3x_5\Rightarrow x_1+x_5=1\) (vì \(x_3\ne0\)).
Tương tự \(x_3+x_7=x_5+x_9=...=x_{997}+x_1=x_{999}+x_3=1\)
\(\Rightarrow\left(x_1+x_5\right)+\left(x_3+x_7\right)+...+\left(x_{997}+x_1\right)+\left(x_{999}+x_3\right)=999\)
\(\Rightarrow2\left(x_1+x_3+...+x_{999}\right)=999\Rightarrow x_1+x_3+...+x_{999}=\dfrac{999}{2}\)
Mặt khác: \(x_1=x_{1000}+x_2;x_3=x_2+x_4;...;x_{999}=x_{998}+x_{1000}\)
\(\Rightarrow\left(x_{1000}+x_2\right)+\left(x_2+x_4\right)+...+\left(x_{998}+x_{1000}\right)=x_1+x_3+...+x_{999}\)
\(\Rightarrow2\left(x_2+x_4+...+x_{1000}\right)=\dfrac{999}{2}\)
\(\Rightarrow x_2+x_4+...+x_{1000}=\dfrac{999}{4}\)
Vậy tổng giá trị 1000 điểm trên là \(\dfrac{999}{2}+\dfrac{999}{4}=\dfrac{2997}{4}\)
`(x-6)^4 +(x-8)^4 =16`
`<=> (x-6)^4 +(x-8)^4 =2^4`
`<=> x-6 +x-8 =2`
`<=> 2x - 14=2`
`<=>2x= 16`
`<=>x=8`
Đặt : \(x-7\text{=}y\)
\(\Rightarrow pt\) chỉ còn :
\(\left(y+1\right)^4+\left(y-1\right)^4\text{=}16\)
\(\Leftrightarrow y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1\text{=}16\)
\(\Leftrightarrow2y^4+12y^2+2\text{=}16\)
\(\Leftrightarrow y^4+6y^2+1\text{=}8\)
\(\Leftrightarrow y^4+6y^2-7\text{=}0\)
Đặt : \(y^2\text{=}z\ge0\)
\(\Rightarrow z^2+6z-7\text{=}0\)
\(\Leftrightarrow\left(z-1\right)\left(z-7\right)\text{=}0\)
\(\Leftrightarrow z\text{=}\left\{{}\begin{matrix}-7\\1\end{matrix}\right.\)
\(\Leftrightarrow z\text{=}-7\left(loai\right)\)
\(\Leftrightarrow z\text{=}1\Rightarrow y\text{=}\pm1\)
\(\Leftrightarrow x\text{=}\left\{{}\begin{matrix}8\\6\end{matrix}\right.\)
Ta có : \(P\text{=}\dfrac{5x-9}{x-3}\text{=}\dfrac{5x-15+6}{x-3}\)
\(\Rightarrow P\text{=}\dfrac{5x-15}{x-3}+\dfrac{6}{x-3}\)
\(\Rightarrow P\text{=}\dfrac{5\left(x-3\right)}{x-3}+\dfrac{6}{x-3}\text{=}\dfrac{6}{x-3}+5\)
\(\Rightarrow P_{max}\Leftrightarrow x-3\text{=}1\Leftrightarrow x\text{=}4\)
\(\Rightarrow P_{max}\text{=}9\Leftrightarrow x\text{=}4\)
\(\Rightarrow P_{min}\Leftrightarrow x-3\text{=}-1\Leftrightarrow x\text{=}2\)
\(\Rightarrow P_{min}\text{=}-1\Leftrightarrow x\text{=}2\)
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1