\(\dfrac{-2003}{2002}\) có phải là phân số tối giản khônhg
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(2n+1;2n+3\right)=d\) (d lẻ)
Khi đó \(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Do d lẻ \(\Rightarrow d=1\)
\(\Rightarrow\) đpcm
goij ucln (2n+1;2n+3)=d
=> 2n+1: hết d
2n+3: hết d
=> 2n+3-2n+1: hết d
2: hết d => de{1;2}
lập luận d là số lẻ
=> d=1
VẬY...
- 87 + ( - 12 ) - ( - 487 ) + 512
= - 87 + ( - 12 ) + 487 + 512
= -87 + 487 + ( - 12 ) + 512
= 400 + 500
= 900
\(3-4n⋮n+1\Rightarrow7-4-4n⋮n+1\)
\(\Rightarrow7-4\left(n+1\right)⋮n+1\)
\(\Rightarrow7⋮n+1\)
\(\Rightarrow n+1=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n=\left\{-8;-2;0;6\right\}\)
Do n là số tự nhiên \(\Rightarrow n=\left\{0;6\right\}\)
ĐKXĐ: \(0< x< 4\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2+\sqrt{x}}=a>0\\\sqrt{2-\sqrt{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=4\)
\(\Rightarrow\dfrac{a^2}{\sqrt{2}+a}+\dfrac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Rightarrow a^2\sqrt{2}-a^2b+ab^2+b^2\sqrt{2}=2\sqrt{2}-2b+2a-ab\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=2\sqrt{2}+2\left(a-b\right)-ab\sqrt{2}\)
\(\Leftrightarrow2\sqrt{2}+ab\sqrt{2}-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\sqrt{2}\left(ab+2\right)-\left(a-b\right)\left(ab+2\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}-a+b\right)\left(ab+2\right)=0\)
\(\Leftrightarrow\sqrt{2}-a+b=0\) (do \(ab\ge0\Rightarrow ab+2>0\))
\(\Leftrightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Hiển nhiên \(2+\sqrt{x}\ge2-\sqrt{x}\) nên:
\(\Leftrightarrow2+\sqrt{x}+2-\sqrt{x}-2\sqrt{4-x}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)
Lời giải:
$7^{3x-2}-3.7^3=7^3.4$
$7^{3x-2}=7^3.4+3.7^3=7^3(3+4)=7^3.7=7^4$
$\Rightarrow 3x-2=4$
$\Rightarrow 3x=6$
$\Rightarrow x=2$
dễ cực các bạn ạ đến giờ mik mới iết đáy bạn nào ko biết thì nói mik chỉ cho
các bạn nhớ kết bạn với mik đi mik giảng cho tên là :
Nguyễn Minh Duy viết hoa đấy nhé!
\(\left(7-x\right)-\left(25-7\right)=-25\)
\(=>\left(7-x\right)-18=-25\)
\(=>7x=\left(-25\right)+18\)
\(=>7x=-17\)
\(=>x=\dfrac{-17}{7}\)
\(\dfrac{-2003}{2002}\) là phân số tối giản vì \(-2003\) không chia hết cho số nào.
có