K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
Gọi tổng trên là $A$
$A=\underbrace{(1+2+3+4+5+....+97+98+99)}_{M}-2\underbrace{(3+6+9+...+99)}_{N}$

Xét $M$

$M=99(99+1):2=4950$

$N=3+6+9+...+99=3(1+2+3+...+11)=3.11(11+1):2=198$

$A=M-2N =4950-2.198=4554$

NV
6 tháng 1

Tổng số tiền vốn và tiền lãi là \(480000\) (đồng)

Tỉ số giữa tiền lãi và tiền vốn là \(20\%=\dfrac{1}{5}\)

Do đó tiền vốn chiếm 5 phần, tiền lãi chiếm 1 phần

Tổng số phần bằng nhau là: \(5+1=6\) phần

Số tiền vốn mua rau là:

\(480000:6\times5=400000\) (đồng)

6 tháng 1

                                Bài giải :

    Số tiền vốn của người bán rau là :

        480 000 : 100 x 20 = 96 000 (đồng)

              Đáp số : 96 000 đồng

tick cho mình nhé

NV
6 tháng 1

- Số lớn nhất \(\Rightarrow x=y=9\), khi đó nó có dạng: \(\overline{19293z}\) chia hết cho 7

\(\Rightarrow\overline{93z}-192\) chia hết cho 7

\(\Rightarrow930+z-192=738+z⋮7\)

\(\Rightarrow z+3⋮7\)

Mà z lớn nhất \(\Rightarrow z=4\)

Vậy số lớn nhất là \(192934\)

- Số nhỏ nhất \(\Rightarrow x=y=0\), khi đó có dạng \(\overline{10203z}\) chia hết cho 7

\(\Rightarrow102-\overline{3z}⋮7\Rightarrow102-\left(30+z\right)⋮7\)

\(\Rightarrow z-2⋮7\), mà z nhỏ nhất \(\Rightarrow z=2\)

Vậy số nhỏ nhất là \(102032\)

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
a. 

Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$

$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$

$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$ 

Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đđ:

$ab=20x.20y$

$\Rightarrow 1200=400xy\Rightarrow xy=3$

Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$ 

$\Rightarrow (a,b)=(20, 60), (60,20)$

b. Đề không rõ ràng. Bạn viết lại nhé.

6 tháng 1

Chiều cao của tam giác đó là:

      15 x 2 : 3 = 10 (cm)

Cạnh đáy của tam giác đó là:

      10 x \(\dfrac{6}{5}\) = 12 (cm)

Diện tích tam giác đó là:

      12 x 10 : 2  = 60 (cm2)

Đáp số:... 

 

Chiều cao của tam giác là:

\(15.2:3=10\left(cm\right)\)

Cạnh đáy của tam giác là:

\(10.\dfrac{6}{5}=12\left(cm\right)\)

Diện tích tam giác là:

\(12.10:2=60\left(cm^2\right)\)

NV
6 tháng 1

\(U_n=\dfrac{\left(n^2-1\right)}{n\left(n+2\right)}U_{n-1}\Rightarrow n\left(n+2\right).U_n=\left(n-1\right)\left(n+1\right).U_{n-1}\)

Đặt \(n\left(n+2\right).U_n=V_n\Rightarrow V_{n-1}=\left(n-1\right)\left(n+2-1\right).U_{n-1}=\left(n-1\right).\left(n+1\right)U_{n-1}\)

\(\Rightarrow V_n=V_{n-1}\)

\(\Rightarrow V_n=V_{n-1}=V_{n-2}=...=V_1\)

Có \(V_1=1.\left(1+2\right).U_1=1\)

\(\Rightarrow V_n=1\)

\(\Rightarrow U_n=\dfrac{V_n}{n\left(n+2\right)}=\dfrac{1}{n\left(n+2\right)}\)

\(\Rightarrow A=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2015.2017}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)

\(=...\)

NV
6 tháng 1

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó  \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2\):

\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)

6 tháng 1

Do �(�) chia hết 2�−5, theo định lý Bezout:

�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0

⇒�=−10

Khi đó  �(�)=6�3−7�2−16�−10

Số dư phép chia cho 3�−2:

�(23)=6.(23)3−7.(23)2−16.(23)−10=−22

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

\(\frac{1719}{3976}=\frac{1}{2+\frac{538}{1719}}=\frac{1}{2+\frac{1}{3+\frac{105}{538}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{13}{105}}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{1}{8+\frac{1}{13}}}}}\)

$\Rightarrow a=8; b=13$

NV
6 tháng 1

\(\dfrac{1719}{3976}=\dfrac{1}{\dfrac{3976}{1719}}=\dfrac{1}{2+\dfrac{538}{1719}}=\dfrac{1}{2+\dfrac{1}{\dfrac{1719}{538}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{105}{538}}}\)

\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{\dfrac{538}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{13}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{\dfrac{105}{13}}}}}\)

\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{8+\dfrac{1}{13}}}}}\)