chứng minh
\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{\sqrt{x+3}}{\sqrt{x-2}}\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)
\(\Rightarrow x-2>0\Rightarrow x>2\)
\(D=\frac{2\sqrt{x}-1}{\sqrt{x}+3}\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}+3\ne0\left(tm\right)\end{cases}}\)
\(\Rightarrow x\ge0\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}=8\)
\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2=8\)
\(\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=8\)
\(18-6\sqrt{5}+6\sqrt{5}-10=8\)
8=8 ( luôn đúng )