Cho đoạn thẳng CD=6 cm, I là một điểm nằm giữa C và D (IC>ID).Trên tia Ix vuông góc với CD lấy 2 điểm M và N sao cho IC=IM,ID=IN, CD cắt MD tại K( K thuộc MD),DN cắt MC tại L(L thuộc MC). Tìm vị trí cuả điểm I trên CD sao cho CN.NK có giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đề bài là 4x thì cách giải nè :
2x2 + 4x + 3 = 2.(x2 + 2x +1) + 1 = 2.(x+1)2 + 1 >= 1 ( >= là dấu lớn hơn hoặc bằng ) khi đó căn thứ nhất >= căn 1 =1
x2 + 2x + 3 = (x+1)2 + 2 >=2 khi đó căn thứ 2 >= căn 2
Suy ra y>= 1 + căn 2
Dấu = xảy ra khi x+1=0 khi x=-1
Ta có: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=a^3+b^3+c^3-3abc\)
\(\Rightarrow\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2019\left(đpcm\right)\)
Ta có : \(\left(a+b+c\right)\left(a^2+b^2+^2-ab-ac-bc\right)\)
\(=a^3+b^3+c^3-3abc\)
\(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2019\)
\(\Rightarrowđpcm\)
a) Gọi tâm của đường tròn nội tiếp \(\Delta\)ABC là I. (I) tiếp xúc với BC,CA,AB tại D,E,F
Ta có \(S_{BIC}=\frac{1}{2}ID.BC=r.\frac{BC}{2}\). Tương tự \(S_{CIA}=r.\frac{CA}{2};S_{AIB}=r.\frac{AB}{2}\)
Vậy \(S_{ABC}=r.\frac{BC+CA+AB}{2}=pr\)(đpcm).
b) Đặt \(BC=a,CA=b,AB=c,AM=m_A,BM=m_B,CM=m_C\)
Áp dụng công thức tính đường trung tuyến có \(m_A=\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{2}\)
\(\Rightarrow\frac{1}{m_A}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}\), Hoàn toàn tương tự đối với \(m_B,m_C\)
Từ đó \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{2}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{2}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{2}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)
Lại có \(r=\frac{S}{p}=\frac{\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}}{p}=\sqrt{\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}\)(Công thức Heron)
\(=\frac{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}{2\sqrt{a+b+c}}\)
Kết hợp với giả thiết \(\frac{1}{m_A}+\frac{1}{m_B}+\frac{1}{m_C}=\frac{1}{r}\) suy ra:
\(\frac{1}{\sqrt{2\left(b^2+c^2\right)-a^2}}+\frac{1}{\sqrt{2\left(c^2+a^2\right)-b^2}}+\frac{1}{\sqrt{2\left(a^2+b^2\right)-c^2}}\)
\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)(1)
Áp dụng BĐT Cauchy: \(VT_{\left(1\right)}\le\frac{1}{\sqrt{\left(b+c\right)^2-a^2}}+\frac{1}{\sqrt{\left(c+a\right)^2-b^2}}+\frac{1}{\sqrt{\left(a+b\right)^2-c^2}}\)
\(=\frac{1}{\sqrt{a+b+c}}.\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}+\sqrt{\left(b+c-a\right)\left(c+a-b\right)}+\sqrt{\left(c+a-b\right)\left(a+b-c\right)}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)\(\le\frac{1}{\sqrt{a+b+c}}.\frac{a+b+c}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)
\(=\frac{\sqrt{a+b+c}}{\sqrt{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}=VP_{\left(1\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)<=> \(\Delta\)ABC đều (đpcm).