K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2022

Chứng minh\(\frac{7n+5}{3n+2}\)là phân số tối giản thì ta chứng minh \(ƯCLN\left(7n+5,3n+2\right)=1\)

Thật vậy, đặt \(ƯCLN\left(7n+5,3n+2\right)=d\left(d\inℕ^∗\right)\)

Khi đó \(\hept{\begin{cases}7n+5⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(7n+5\right)⋮d\\7\left(3n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}21n+15⋮d\\21n+14⋮d\end{cases}}\)

\(\Rightarrow\left(21n+15\right)-\left(21n+14\right)⋮d\)\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)

Vậy \(ƯCLN\left(7n+5,3n+2\right)=1\), do đó phân số \(\frac{7n+5}{3n+2}\)tối giản.

gọi \(ƯCLN\left(7n+5;3n+2\right)\) là d

\(\Rightarrow\hept{\begin{cases}7n+5⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}21n+15⋮d\\21n+14⋮d\end{cases}}}\)

\(\Rightarrow21n+15-\left(21n+14\right)=1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\frac{7n+5}{3n+2}\) là 1 p/s tối giản

\(\frac{1}{9}.A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2020.2021}+\frac{1}{2021.2022}\)

\(\frac{1}{9}A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2021-2020}{2020.2021}+\frac{2022-2021}{2021.2022}\)

\(\frac{1}{9}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2020}-\frac{1}{2021}+\frac{1}{2021}-\frac{1}{2022}\)

\(\frac{1}{9}A=1-\frac{1}{2022}\)

\(A=9-\frac{9}{2022}\)

NM
11 tháng 3 2022

ta có :

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2021}-\frac{1}{2022}\right)\)

\(=9\left(1-\frac{1}{2022}\right)=9\times\frac{2021}{2022}=\frac{6063}{674}\)

NM
11 tháng 3 2022

rõ ràng rằng : \(n\ge S\left(n\right)\text{ với mọi số tự nhiên n}\)

nên ta có : \(2014=n+S\left(n\right)\le n+n=2n\text{ hay }n\ge\frac{2014}{2}=1007\)

mà \(n\le n+S\left(n\right)=2014\)thế nên chắc chắc rằng n là số tự nhiên có 4 chữ số, nằm trong đoạn từ 1007 đến 2014.

vì thế S(n) là tổng của 4 chữ số nên \(S\left(n\right)\le9\times4=36\Rightarrow n\ge2014-36=1978\)nên nằm trong đoạn từ 1978 đến 2014.

Gọi n có dạng \(\overline{abcd}\) dựa vào điều kiện ở trên thì a chỉ có thể bằng 1 hoặc 2

với \(a=1\Rightarrow b=9\Rightarrow\hept{\begin{cases}c\ge7\\\overline{abcd}+a+b+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\ge7\\11\times c+2\times d=104\end{cases}\Leftrightarrow\hept{\begin{cases}c=8\\d=8\end{cases}}}\)

Vậy ta thu được số \(1988\text{ thỏa mãn đề bài}\)

Với \(a=2\Rightarrow b=0\Rightarrow\hept{\begin{cases}c\le1\\\overline{20cd}+2+0+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\le1\\11\times c+2\times d=12\end{cases}\Leftrightarrow\hept{\begin{cases}c=0\\d=6\end{cases}}}\)

vậy ta thu được số \(2006\text{ cũng thỏa mãn đề bài}\)

11 tháng 3 2022

Xét \(4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+\dfrac{4}{4^3}+...+\dfrac{2014}{4^{2013}}\)

=> \(3S=4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2014}{4^{2013}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+...+\dfrac{2014}{4^{2014}}\right)\)

=> \(3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}-\dfrac{2014}{4^{2014}}< 1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)

Đặt \(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)

=> \(4A=4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\)

=> \(3A=4A-A=\left(4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\right)\)

=> \(3A=4-\dfrac{1}{4^{2013}}< 4\)

=> \(A< \dfrac{4}{3}\)

=> \(3S< \dfrac{4}{3}\)

=> \(S< \dfrac{4}{9}< \dfrac{1}{2}\)

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}\)

\(4S-S=3S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2014}{4^{2014}}\right)\)

\(3S=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+......+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

đặt \(A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2023}}\)

\(4A-A=4+1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{2022}}-\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2023}}\right)\)

\(3A=4-\frac{1}{4^{2023}}\)

\(A=\frac{4}{3}-\frac{1}{3.4^{2023}}\)

\(\Rightarrow3S=\frac{4}{3}-\frac{1}{3.4^{2023}}-\frac{2014}{4^{2024}}\)

\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}\)

do \(\frac{4}{9}< \frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}< \frac{4}{8}=\frac{1}{2}\left(đpcm\right)\)

20m chiếm số phần của đoạn đường là:

\(1-\frac{3}{5}=\frac{2}{5}\)(đoạn đường)

đoạn đường đó dài số  m là:

\(20:\frac{2}{5}=20\left(m\right)\)

11 tháng 3 2022

?????????????????????
 

ta có:

\(\frac{3}{10}>\frac{3}{14};\frac{3}{11}>\frac{3}{14};\frac{3}{12}>\frac{3}{14};\frac{3}{13}>\frac{3}{14};\frac{3}{14}=\frac{3}{14}\)

\(\Rightarrow\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{14}\times5=\frac{15}{14}>1\)\

lại có:\(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}.5=1,5< 2\)

\(\Rightarrow1< \frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\)

11 tháng 3 2022

???? ủa vậy ma nó bt

do x;y;z;t có vai trò như nhau ko mất  tính tổng quát,ta giả sử:

\(x\le y\le z\le t\)

thay x;y;z;t bằng x,ta có:

\(xyzt=5.\left(x+y+z+t\right)+7\le20x+7\)

\(\Leftrightarrow t^3\le27\)

\(\Leftrightarrow t\le3\)

mk CHỈ NGHĨ ĐC ĐẾN ĐÂY THÔI xin lỗi nhé

11 tháng 3 2022

Ta có:

Để \(\frac{n-5}{n-3}\inℤ\)thì \(n-5⋮n-3\)

\(\Rightarrow n+2-3⋮n-3\)

\(\Rightarrow2⋮n-3\)

\(\Rightarrow n-3\inƯ\left(2\right)\)

Mà \(n\)chỉ thỏa mãn các số có 1 chữ số nên:

\(n-3=\left\{0,1,-1\right\}\)

\(\Rightarrow n=\left\{2;3;4\right\}\)

11 tháng 3 2022

cmr  A có giá trị ko phải là 1 số tự nhiên

17 tháng 5 2022

undefined