Trong mặt phẳng toạ độ (O, \(\overrightarrow{i}\), \(\overrightarrow{j}\)) cho hình bình hành ABCD có đỉnh A thoả mãn \(\overrightarrow{OA}\) = 2\(\overrightarrow{i}\) - 3\(\overrightarrow{j}\) và tâm I(1;1). Biết điểm K(-1; 2) nằm trên đường thẳng AB và điểm D có hoành độ gấp đôi tung độ.
a. Tìm các đỉnh còn lại của hình bình hành.
b. Tìm điểm M trên trục Oy sao cho tổng khoảng cách từ M đến hai điểm A, D là nhỏ nhất.
c. Tìm điểm N trên trục Ox sao cho AN + NI nhỏ nhất.
a.
\(A\left(2;-3\right)\)
Do I là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_I-x_A=0\\y_C=2y_I-y_A=5\end{matrix}\right.\)
\(\Rightarrow C\left(0;5\right)\)
\(\overrightarrow{AK}=\left(-3;5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;3\right)\) là 1 vtpt
Phương trình AB:
\(5\left(x+1\right)+3\left(y-2\right)=0\Leftrightarrow5x+3y-1=0\)
Do điểm D có hoành độ gấp đôi tung độ, gọi tọa độ D có dạng \(D\left(2d;d\right)\)
I là tâm hình bình hành nên I là trung điểm BD
\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_I-x_D=2-2d\\y_B=2y_I-y_D=2-d\end{matrix}\right.\)
B thuộc đường thẳng AB nên thay tọa độ B vào pt AB ta được:
\(5\left(2-2d\right)+3\left(2-d\right)-1=0\)
\(\Rightarrow d=\dfrac{15}{13}\Rightarrow D\left(\dfrac{30}{13};\dfrac{15}{13}\right)\)
\(\Rightarrow B\left(-\dfrac{4}{13};\dfrac{11}{13}\right)\)
b.
Gọi A' là điểm đối xứng A qua Oy \(\Rightarrow A'\left(-2;-3\right)\)
\(\Rightarrow\overrightarrow{A'D}=\left(\dfrac{56}{13};\dfrac{54}{13}\right)=\dfrac{2}{13}\left(28;27\right)\)
Đường thẳng A'D nhận \(\left(27;-28\right)\) là 1 vtpt
Phương trình A'D:
\(27\left(x+2\right)-28\left(y+3\right)=0\Leftrightarrow27x-28y-30=0\)
Gọi M' là giao điểm của A'D với Oy
\(\Rightarrow M'\left(0;-\dfrac{15}{14}\right)\)
Do A' đối xứng A qua Oy nên: \(MA=MA'\)
\(\Rightarrow MA+MD=MA'+MD\ge A'D\)
Dấu "=" xảy ra khi và chỉ khi M, A', D thẳng hàng
Hay M là giao điểm của A'D và Oy
\(\Rightarrow M\) trùng M'
\(\Rightarrow M\left(0;-\dfrac{15}{14}\right)\)