K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Sửa đề câu a thành tính độ dài AE, CE

a, Vì BE là phân giác của ABC 

\(\Rightarrow\frac{EC}{BC}=\frac{AE}{AB}\)\(\Rightarrow\frac{EC}{4}=\frac{AE}{7}=\frac{EC+AE}{4+7}=\frac{AC}{11}=\frac{6}{11}\)(Áp dụng tính chất dãy tỉ số bằng nhau)

Do đó: \(\frac{EC}{4}=\frac{6}{11}\)\(\Rightarrow EC=\frac{4.6}{11}=\frac{24}{11}\)  ; \(\frac{AE}{7}=\frac{6}{11}\)\(\Rightarrow AE=\frac{6.7}{11}=\frac{42}{11}\)

b, Xét △ABH vuông tại H và △CBF vuông tại F

Có: ABH = CBF (gt)

=> △ABH ᔕ △CBF (g.g)

\(\Rightarrow\frac{AB}{CB}=\frac{BH}{BF}\)\(\Rightarrow AB.BF=BH.BC\)

c, Gọi DF ∩ BC = { K }  ;  CF ∩ AB = { I }  ; GE ∩ DF = { O }

Xét △BIC có BF vừa là đường cao vừa là đường phân giác

=> △BIC cân tại B 

=> BI = BC 

và IF = FC

mà AD = DC

=> DF là đường trung bình của △CAI

=> DF // AI và 2FD = AI   

=> DF // AB

=> DK // AB

Xét △ABC có: DK // AB và AD = DC (gt)

=> DK là đường trung bình của △ABC

=> K là trung điểm của BC

=> BK = KC 

Vì DF // AB (cmt)  

  • \(\Rightarrow\frac{BG}{GD}=\frac{BI}{DF}\)(định lý Thales) \(\Rightarrow\frac{BG}{GD}=\frac{2BI}{2DF}\)\(\Rightarrow\frac{BG}{GD}=\frac{2BI}{AI}\)  (1)
  • \(\Rightarrow\frac{AE}{DE}=\frac{AB}{DF}\) (Hệ quả định lý Thales)

Ta có: \(\frac{CE}{DE}=\frac{DC-DE}{DE}=\frac{DC}{DE}-1=\frac{AD}{DE}-1=\frac{AE-DE}{DE}-1=\frac{AE}{DE}-1-1=\frac{AB}{DF}-2\)

\(=\frac{AB}{DF}-2=\frac{2\left(AI+BI\right)}{2DF}-2=\frac{2AI+2BI}{AI}-2=\frac{2AI+2BI-2AI}{AI}=\frac{2BI}{AI}\)  (2)

Từ (1) và (2) \(\Rightarrow\frac{BG}{GD}=\frac{CE}{DE}\)\(\Rightarrow GE//BC\)

  • \(\Rightarrow\frac{GO}{KC}=\frac{OF}{FK}\)  (Hệ quả định lý Thales)
  • \(\Rightarrow\frac{OE}{BK}=\frac{OF}{FK}\)​ (Hệ quả định lý Thales)

\(\Rightarrow\frac{GO}{KC}=\frac{OE}{BK}\)

Mà KC = BK 

=> GO = OE 

=> O là trung điểm của GE

Mà GE ∩ DF = { O }

=> DF đi qua trung điểm của EG

29 tháng 3 2020

please

29 tháng 3 2020

Toán lp mấy mà khó zậy bn?? xl mk hông bt lm

29 tháng 3 2020

\(3\left(x+3\right)-2x+9\)

\(=3x+9-2x+9\)

\(=x+18\)

đề bài lạ == cứ rút gọn á 

\(3\left(x+3\right)-x2+9\)

\(=3x+9-2x+9\)

\(=x+18\)

29 tháng 3 2020

x2 + 4x + 3 = 0

<=> ( x + 1 )( x + 3 ) = 0

<=> x + 1 = 0 hoặc x + 3 = 0

<=> x = -1 hoặc x = -3

Vậy ...

29 tháng 3 2020

x^2+4x+3=0

<=>x^2+x+3x+3=0

<=>x(x+1)+3(x+1)=0

<=>(x+1)(x+3)=0

<=>\(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

vậy ............

29 tháng 3 2020

không biết làm thế nào nữa

29 tháng 3 2020

Ta có : 3.x2 - 6.x + y - 2 = 0             ( 1 ) 

Xét phương trình bậc hai ,ẩn x , tham sô y .

Nếu tồn tại cặp số ( x , y ) thỏa mãn phương trình ( 1 ) thì ( 1) phải có nghiệm.Do đó : 

\(\Delta'\ge0\Leftrightarrow9-3.\left(y-2\right)\ge0\Leftrightarrow y\le5\)

Vậy MAX y = 5 khi ( 1 ) có nghiệm kép x = 1 

Vậy ( x ; y ) = ( 1 ;  5 )

29 tháng 3 2020

3x2-6x+y-2=0 (1)

Xét phương trình bậc hai, ẩn x, tham số y

Nếu tồn tại cặp số (x;y) thỏa mãn phương trình (1) thì (1) phải có nghiệm

Do đó: \(\Delta'\ge0\Leftrightarrow9-3\left(y-2\right)\ge0\Leftrightarrow y\le5\)

Vậy Maxy=5 khi (1) có nghiệm kép  x=1

Vậy (x;y)=(1;5)

29 tháng 3 2020

Từ giải thiết, ta suy ra được những điều sau :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}-\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}\)

\(=\frac{x}{-x\left(y^2+y+1\right)}-\frac{y}{-y\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)      (1)

Và \(\left(x^2+x+1\right)\left(y^2+y+1\right)\) 

\(=x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1\)

\(=x^2y^2+\left(x^2+xy\left(x+y\right)+xy+y^2\right)+\left(x+y\right)+1\)

\(=x^2y^2+\left(x^2+2xy+y^2\right)+1+1\)

\(=x^2y^2+\left(x+y\right)^2+2\)

\(=x^2y^2+3\)   (2)

Từ (1) và (2) suy ra :

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2-x-1+y^2+y+1+2x-2y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{-x^2+y^2+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{\left(x+y\right)\left(y-x\right)+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=\frac{y-x+x-y}{\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

\(=0\)(ĐPCM)

7 tháng 4 2020

Biến đổi

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}=\frac{\left(x^4-y^4\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)

(do x+y=1 => y-1=-x và x-1=-y)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^3+y^3\right)-\left(x-y\right)}{xy\left(x^2y^2+y^2x+y^2+yx^2+xy+y+x^2+x+1\right)}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

\(=\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

\(=\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

=> ĐPCM

@Huy Tú: Mik lạy bạn thật sự, nếu mẫu giống nhau với được khử mẫu, chứ nếu bạn không để cả hai vế có mẫu giống nhau thì không khử được mẫu đâu bạn ak.

\(\frac{2\left(1-3x\right)}{5}-\frac{2x+3}{10}=7-\frac{3\left(2x+1\right)}{4}\)

\(\Leftrightarrow\frac{2-6x}{5}-\frac{2x+3}{10}=7-\frac{6x+3}{4}\)

\(\Leftrightarrow\frac{4\left(2-6x\right)}{20}-\frac{2\left(2x+3\right)}{20}=\frac{140}{20}-\frac{5\left(6x+3\right)}{20}\)

\(\Rightarrow8-24x-4x-6=140-30x-15\)

\(\Leftrightarrow-24x-4x+30x=140-15-8+6\)

\(\Leftrightarrow2x=123\)

\(\Leftrightarrow x=\frac{123}{2}\)

Vậy \(x=\frac{123}{2}\) là nghiệm phương trình. 

19 tháng 5 2020

\(\frac{2\left(1-3x\right)}{5}-\frac{2x+3}{10}=7-\frac{3\left(2x+1\right)}{4}\)

\(< =>\frac{2-6x}{5}-\frac{2x+3}{10}=\frac{28-\left(6x+3\right)}{4}\)

\(< =>\frac{16-48x}{40}-\frac{8x+12}{40}=\frac{280-60x-30}{40}\)

\(< =>16-48x-8x-12=280-30-60x\)

\(< =>4-56x=250-60x\)

\(< =>4+4x=250\)\(< =>x=\frac{250-4}{4}=\frac{123}{2}\)

29 tháng 3 2020

\(\text{Đk:}x\ne-\frac{1}{2}\Rightarrow P=\frac{4x^2\left(x+2\right)-\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(4x^2-1\right)\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(2x-1\right)\left(x+2\right)}{2x+1}\)

\(=\frac{2x^2+4x-x-2}{2x+1}=\frac{3}{2}\Rightarrow2x^2+3x-2=3x+\frac{3}{2}\Leftrightarrow2x^2-\frac{7}{2}=0......\)

\(P\text{ nguyên }\Rightarrow2x^2+3x-2⋮2x+1\Leftrightarrow2x^2+3x-2-\left(x+1\right)\left(2x+1\right)⋮2x+1\Leftrightarrow-3⋮2x+1....\)

30 tháng 3 2020

Mong có aii đó tốt bụng giúp mình câu b

Cảm ơn bạn nhiều, mình vừa mới mò ra cách giải câu b trong vòng 1 ngày, rất là ngắn gọn!

b) Dễ dàng thấy tam giác ADG và tam giác AQG bằng nhau theo trường hợp cạnh góc cạnh

Suy ra AQG^ = 90 độ

Suy ra QG// HE, suy ra đpcm