K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2023

\(x\left(y-1\right)-y\left(1-y\right)\)

\(=x\left(y-1\right)-\left[-y\left(y-1\right)\right]\) 

\(=x\left(y-1\right)+y\left(y-1\right)\)

\(=\left(y-1\right)\left(x+y\right)\)

8 tháng 10 2023

a) \(\left(x+3\right)\left(x+1\right)-x\left(x-5\right)=11\)

\(\Leftrightarrow x^2+x+3x+3-x^2+5x=11\)

\(\Leftrightarrow9x+3=11\)

\(\Leftrightarrow9x=11-3\)

\(\Leftrightarrow9x=8\)

\(\Leftrightarrow x=\dfrac{8}{9}\)

b) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(\Leftrightarrow\left(8x-24x^2+2-6x\right)+\left(24x^2-60x-4x+10\right)=-50\)

\(\Leftrightarrow2x-24x^2+2+24x^2-64x+10=-50\)

\(\Leftrightarrow-62x+12=-50\)

\(\Leftrightarrow-62x=-50-12\)

\(\Leftrightarrow-62x=-62\)

\(\Leftrightarrow x=\dfrac{-62}{-62}\)

\(\Leftrightarrow x=1\)

8 tháng 10 2023

a) \(\left(x+3\right)\left(x+1\right)-x\left(x-5\right)=11\)

\(x^2+x+3x+3-x^2+5x=11\)

\(x+8x+3=11\)

\(x+8x=8\)

\(x\left(8+1\right)=8\)

\(x=\dfrac{8}{9}\)

b) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)

\(8x-24x^2+2-6x+24x^2-60x-4x+10=-50\)

\(-62x+12=-50\)

\(-62x=-62\)

\(x=1\)

 

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

Vì $x=9$ nên $x-9=0$
Ta có:

$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$

$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$

$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$

$=x-10=9-10=-1$

7 tháng 10 2023

\(f\left(x\right)=x^7+x^2+1\)

\(f\left(x\right)=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(f\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

 Xét đa thức \(g\left(x\right)=x^5-x^4+x^2-x+1\). Giả sử đa thức này có nghiệm hữu tỉ \(x=\dfrac{p}{q}\left(p,q\inℤ;\left(p,q\right)=1\right)\) thì \(p|1,q|1\) nên \(x=\pm1\). Thử lại, ta thấy cả 2 nghiệm này đều không thỏa mãn. Do đó đa thức g(x) không thể có nghiệm hữu tỉ.   (*)

 Giả sử ta có thể phân tích tiếp \(g\left(x\right)\) thành nhân tử thì \(g\left(x\right)=h\left(x\right).j\left(x\right)\) với h(x) và j(x) là các đa thức hệ số hữu tỉ khác hằng có bậc nhỏ hơn 5 thì một trong 2 đa thức h(x), j(x) phải có bậc lẻ (vì nếu cả 2 cùng có bậc chẵn thì \(g\left(x\right)=h\left(x\right).j\left(x\right)\) sẽ có bậc chẵn, vô lí). Mà một đa thức bậc lẻ thì luôn có nghiệm nên nếu g(x) phân tích được thành nhân tử thì nó sẽ có nghiệm hữu tỉ, mâu thuẫn với (*).

 Vậy ta không thể phân tích tiếp g(x) thành nhân tử. Điều này có nghĩa rằng ta đã hoàn thành xong việc phân tích f(x) thành nhân tử.

6 tháng 10 2023

6.25 cm nha

6 tháng 10 2023

\(D=\left(x+1\right)^5-\left(x-1\right)\left(x^5+x+1\right)-3x\left(x+1\right)\\ =x^5+1^5-x^6+x^2+x-x^5-x-1-3x^2-3x\\ =\left(x^5-x^5\right)+\left(1-1\right)-x^6-\left(3x^2-x^2\right)-\left(3x-x+x\right)\\ =x^6-2x^2-3x\)

6 tháng 10 2023

a) ABCD là hình thoi nên AB//CD và \(AB=CD\). Gọi O là giao điểm của AC và BD thì O là trung điểm của AC.

\(\Rightarrow\) AP//CQ và \(AP=\dfrac{1}{3}AB=\dfrac{1}{3}CD=CQ\) nên APCQ là hình bình hành. 

 Do đó PQ đi qua trung điểm O của AC.

 Áp dụng định lý Menelaus cho tam giác BAD, cát tuyến IPO, ta có:

 \(\dfrac{IA}{ID}.\dfrac{OD}{OB}.\dfrac{PB}{PA}=1\) \(\Rightarrow\dfrac{IA}{ID}.1.2=1\) \(\Rightarrow\dfrac{IA}{ID}=\dfrac{1}{2}\) hay A là trung điểm ID.

 Từ đó dễ thấy IO là đường trung bình của tam giác DIB, suy ra BI//AO. Lại có \(AO\perp BD\) (tính chất hình thoi) nên \(BI\perp BD\), suy ra đpcm.

 b) Dễ thấy P là trọng tâm tam giác BID nên K là trung điểm IB hay \(BK=IK\). Ta có đpcm.

6 tháng 10 2023

Để nhận biết hình chữ nhật ta có bốn cách nhận biết

+ Nếu 1 tứ giác có 4 góc vuôn thì tứ giá đó là hình chữ nhật

+ Nếu 1 hình thang cân có 1 góc vuông thì hình thang cân đó là hình chữ nhật

+ Nếu hình bình hành có 1 góc vuông thì hình bình hành đó là hình chữ nhật 

+ Nếu hình bình hành có hai đường chéo bằng nhau thì hình bình hành đó là hình chữ nhật 

6 tháng 10 2023

Tứ giác có ba góc vuông là hình chữ nhật. Vì tổng các góc của tứ giác là 180 độ, vì vậy khi một tứ giác có 3 góc vuông thì chúng ta có thể dễ dàng suy ra góc còn lại cũng là 90 độ. Mà tứ giác có 4 góc 90 độ thì chúng ta có thể kết luận đó là hình chữ nhật

 

 

 

 

 

 

 

6 tháng 10 2023

\(-x^2+3x^2-3x+1\)

\(=-\left(x^3-3x^2+3x-1\right)\)

\(=-\left(x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\right)\)

\(=-\left(x-1\right)^3\)

Áp dụng hằng đẳng thức số 5:

\(\left(A-B\right)^5=A^3-3A^2B+3AB^2-B^3\)

6 tháng 10 2023

Gọi hai số đó có dạng: \(x,x+1\) (\(x\in N\)

Hiệu các bình phương của chúng là 31 nên ta có: \(\left(x+1\right)^2-x^2=31\) (1)

Giải phương trình (1) ta có:

\(\left(x+1\right)^2-x^2=31\)

\(\Leftrightarrow x^2-x^2+2x+1=31\)

\(\Leftrightarrow2x+1=31\)

\(\Leftrightarrow2x=30\)

\(\Leftrightarrow x=15\)

Vậy hai số đó là: \(15,16\)