Cho tam giác ABC, trung tuyến AD. Tia phân giác của góc ADB cắt AB tại M, tia phân giác của góc ADC cắt AC tại N.
a) Chứng minh rằng MN // BC.
b) Gọi I là giao điểm của AD và MN. Chứng minh I là trung điểm của MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
zì tam giác ABC có tia phân giác AM
=>\(\frac{BM}{MC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)(1)
mà BM+MC=11 (2)
Từ 1 zà 2 ta có hệ phương trình
\(\hept{\begin{cases}MB+MC=11\\\text{4MB-3MC=0 }\end{cases}}\)
\(\hept{\begin{cases}MB=\frac{33}{7}\\MC=\frac{44}{7}\end{cases}}\)
Bài 1 bạn tự làm nhé
Bài 2 :
Xét \(\Delta\)ADE vuông tại E :
AE < AD (1)
Xét \(\Delta\)CDF vuông tại F
CF < CD (2)
Từ (1) và (2) => AE + CF < AD + CD = AC
Bài 3 :
Ta có : \(BM=BC\)=> \(\Delta\)BMC cân ở C nên \(\widehat{MCB}=\widehat{CMB}\)
Ta lại có : \(\widehat{BCM}+\widehat{MCA}=90^0,\widehat{CMH}+\widehat{MCH}=90^0\)
=> \(\widehat{MCH}=\widehat{MCN}\)
Xét \(\Delta\)MHC và \(\Delta\)MNC có :
MC chung
HC = NC(gt)
\(\widehat{MCH}=\widehat{MCN}\)(cmt)
=> \(\Delta\)MHC = \(\Delta\)MNC(c.g.c)
Do đó \(\widehat{MNC}=\widehat{MHC}=90^0\)
hay MN \(\perp\)AC
Ta có : BM = BC,CH = CN và AM > AN
Do đó BM + MA + CH > BC + CN + NA hay AB + CH > BC + CA
\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)
Áp dụng bđt AM-GM ta có
\(\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\le1\)\(\Leftrightarrow\left(x+y\right)^2\le2\Rightarrow0< x+y\le\sqrt{2}\)
Ta có:
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x=0;x=-3;x=2\)
zì BD là phân giác cua góc B
\(=>\frac{AD}{DC}=\frac{AB}{DC}\)
CE là tia phân giác góc E
\(=>\frac{AE}{EB}=\frac{AC}{BC}=\frac{AB}{BC}\)
\(=>\frac{AD}{DC}=\frac{AE}{EB}=>DE//BC\)( định lý ta lét đào )
\(=>\widehat{EDB}=\widehat{DBC}\left(soletrong\right)\)
mà \(\widehat{DBC}=\widehat{EBD}\)( phân giác )
\(=>\widehat{EBD}=\widehat{EDB}=>\Delta EBD\left(cân\right)\)
=> ED=EB=10cm
theo định lý ta lét : do ED//BC
\(\frac{ED}{BC}=\frac{AE}{AB}=\frac{AB-EB}{AB}=>\frac{AB-10}{AB}=\frac{10}{16}=>AB=26.67\)
Bài này bạn làm theo phương pháp chứng minh chặn dưới
Từ gt => Ít nhất 1 trong 3 số a,b,c không lớn hơn 1 (Nếu ngược lại thì a2+b2+c2+abc>4)
Giả sử đó là a thì:
ab+bc+ca-abc=a(b+c)+bc(1-a) \(\ge0\)
Tiếp theo bạn chứng minh chặn trên. Đk giả thiết cho có thể viết lại là
\(\frac{a^2}{4}+\frac{b^2}{4}+\frac{c^2}{4}+2\cdot\frac{a}{2}\cdot\frac{b}{2}\cdot\frac{c}{2}=1\)
Do vậy tồn tại \(\Delta\)ABC không tù sao cho a=2cosA, b=2cosB, c=2cosC. BĐT cần chứng minh trở thành
2cosAcosB+2cosBcosC+2cosCcosA-4cosAcosBcosC \(\le\)1(1)
Có 2 trong 3 góc A,B,C không lớn hơn 60o hoặc không nhỏ hơn 60o
Không mất tính tổng quát giả sử 2 góc đó là góc A và B, khi đó:
(1-2cosA)(1-2cosB) \(\ge\)0
Mặt khác, ta có BĐT (1) tương đương với
cos(A+B)+cos(A-B)+(2cosA+2cosB-4cosAcosB)cosC \(\le\)1
cos(A-B)+(2cosA+2cosB-4cosAcosB-1)cosC\(\le\)1
cos(A-B)-(1-2cosA)(1-2cosB)cosC \(\le\)1
Do (1-2cosA)(1-2cosB) \(\ge\)0; cosC\(\ge\)0 và cos(A-B) \(\le\)1 nên BĐT cuối hiển nhiên đúng
=> ĐPCM
Cách giải: Khánh Hoàng (khanhtuqq)
a)3x-2=2x-3
3x-2x=-3+2
x=-1
Vậy x=-1
b)3-4y+24+6y=y+27+3y
3+24-27=y+3y+4y-6y
0=2y
0:2=y
0=y
Vậy y=0
c) 7-2x=22-3x
-2x+3x=22-7
x=15
Vậy x=15
d) 8x-3=5x+12
8x-5x=12+3
3x=15
x=15:3
x=5
Vậy x=5
a) xét tam giác AMI zà tam giác ABD có
góc BAD chung
xét tam giác ABD có tia phân giác DM
=>\(\frac{AM}{MB}=\frac{AD}{BD}\left(1\right)\)
xét tam giac ADC có tia phân giác DN
\(\frac{AN}{NC}=\frac{AD}{DC}\left(2\right)\)
mà BD=DC (gt ) (3 )
từ 1 ,2 ,3 suy ra
\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{AD}{DC}\)
=> MN//BC
b) Tam giác ABD có MI//BD
=> \(\frac{AM}{AB}=\frac{AI}{AD}=\frac{MI}{BD}\left(4\right)\)
tam giác ADC có IN//DC
=>\(\frac{AN}{AC}=\frac{AI}{DC}=\frac{IN}{DC}\left(5\right)\)
từ (4) ,(5) suy ra
\(\frac{MI}{BD}=\frac{IN}{DC}=\frac{AI}{AD}\)
mà BD=DC
=> MI=NI
=> I là trung điểm của MN