K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

16m vải còn lại chính là 1-3/8 = 5/8 số vải còn lại sau khi bán buổi chiều. Vậy buổi chiều người đó có số mét vải là: 16:5.8=25,6(m)

25,6m này chính là 1-3/11 = 8/11 số vải còn lại sau khi đã bán buổi sáng. Vậy lúc đầu cửa hàng đó có: 25,6 :8.11 =35,2 (m) Đ/S:35,2m vải.

Bài này nếu bạn chưa hiểu lắm thì cứ vẽ sơ đồ ra là hiểu hết à! Chúc bạn học tốt nha!

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bài 5:

a: ĐKXĐ: x≠-2

Ta có: \(1+\frac{1}{x+2}=\frac{12}{x^3+8}\)

=>\(1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(\frac{x^3+8}{\left(x+2\right)\left(x^2-2x+4\right)}+\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(x^3+8+x^2-2x+4=12\)

=>\(x^3+x^2-2x=0\)

=>\(x\left(x^2+x-2\right)=0\)

=>x(x+2)(x-1)=0

=>\(\left[\begin{array}{l}x=0\\ x+2=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=-2\left(loại\right)\\ x=1\left(nhận\right)\end{array}\right.\)

b: ĐKXĐ: x<>2/7

Ta có: \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

=>\(\left(2x+3\right)\cdot\frac{3x+8+2-7x}{2-7x}=\left(x-5\right)\cdot\frac{3x+8+2-7x}{2-7x}\)

=>\(\left(2x+3\right)\cdot\frac{-4x+10}{2-7x}=\left(x-5\right)\cdot\frac{-4x+10}{2-7x}\)

=>\(\left(2x+3\right)\left(-4x+10\right)-\left(x-5\right)\left(-4x+10\right)=0\)

=>(-4x+10)(2x+3-x+5)=0

=>-2(2x-5)(x+8)=0

=>(2x-5)(x+8)=0

=>\(\left[\begin{array}{l}2x-5=0\\ x+8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac52\left(nhận\right)\\ x=-8\left(nhận\right)\end{array}\right.\)

Bài 4:

a: ĐKXĐ: x∉{2;-1}

Ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x-2\right)\left(x+1\right)}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)

=>(x-2)(x+2)+3(x+1)=3+(x-2)(x+1)

=>\(x^2-4+3x+3=3+x^2-x-2\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

Bài 3:

a: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

b: ĐKXĐ: x∉{3;-3}

Ta có: \(\frac{x^2-x}{x+3}-\frac{x_{}^2}{x-3}=\frac{7x^2-3x}{9-x^2}\)

=>\(\frac{\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-7x^2+3x}{\left(x-3\right)\left(x+3\right)}\)

=>\(\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)

=>\(x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)

=>0x=0(luôn đúng)

Vậy: x∉{3;-3}

Bài 2:

a: ĐKXĐ: x∉{-1;2}

ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3+x^2-x-2}{\left(x-2\right)\left(x+1\right)}\)

=>\(\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=x^2-x+1\)

=>\(x^2-4+3x+3=x^2-x+1\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{0;2}

ta có: \(\frac{5-x}{4x^2-8x}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)

=>\(\frac{5-x}{4x\left(x-2\right)}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)

=>\(\frac{4\left(5-x\right)}{16x\left(x-2\right)}+\frac{7\cdot2x\cdot\left(x-2\right)}{8\cdot2x\cdot\left(x-2\right)}=\frac{8\left(x-1\right)}{8\cdot2x\cdot\left(x-2\right)}+\frac{2x}{8\cdot2x\cdot\left(x-2\right)}\)

=>4(5-x)+14x(x-2)=8(x-1)+2x

=>\(20-4x+14x^2-28x=8x-8+2x\)

=>\(14x^2-32x+20-10x+8=0\)

=>\(14x^2-42x+28=0\)

=>\(x^2-3x+2=0\)

=>(x-2)(x-1)=0

=>x=2(loại) hoặc x=1(nhận)

Bài 1:

a: ĐKXĐ: x∉{1/4;-1/4}

ta có: \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{6x+8}{16x^2-1}\)

=>\(\frac{-3}{4x-1}-\frac{2}{4x+1}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>-3(4x+1)-2(4x-1)=-6x-8

=>-12x-3-8x+2=-6x-8

=>-20x-1=-6x-8

=>-14x=-7

=>x=1/2(nhận)

b: ĐKXĐ: x∉{1/5;3/5}

Ta có: \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)

=>\(\frac{3}{5x-1}-\frac{2}{5x-3}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>\(\frac{3\left(5x-3\right)}{\left(5x-1\right)\left(5x-3\right)}-\frac{2\left(5x-1\right)}{\left(5x-1\right)\left(5x-3\right)}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>3(5x-3)-2(5x-1)=-4

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

=>x=3/5(loại)

16 tháng 6

Ta có:

\(4x^3+6x^2-12x+8=0\)

\(\Rightarrow2x^3+3x^2-6x+4=0\)

\(\Rightarrow(x+1)(2x^2+x-4)=0\)

\(\Rightarrow\begin{cases}x+1=0\\ 2x^2+x-4=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\ x=\frac{-1\pm\sqrt{33}}{4}\end{cases}\)

Vậy \(x\in\left\lbrace-1;\dfrac{-1\pm\sqrt{33}}{4}\right\rbrace\)

Để (d1) cắt (d2) thì \(\frac{m}{2m}<>\frac{m-1}{m+1}\)

=>\(\frac{m-1}{m+1}<>\frac12\)

=>\(\frac{m-1}{m+1}-\frac12<>0\)

=>\(\frac{2m-2-m-1}{2\left(m+1\right)}<>0\)

=>\(\frac{m-3}{m+1}<>0\)

=>\(\begin{cases}m-3<>0\\ m+1<>0\end{cases}\Rightarrow m\notin\left\lbrace3;-1\right\rbrace\)

Để (d1)//(d2) thì \(\frac{m}{2m}=\frac{m-1}{m+1}<>\frac{3m+4}{m-4}\)

=>\(\begin{cases}\frac{m-1}{m+1}=\frac12\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\Rightarrow\begin{cases}2\left(m-1\right)=m+1\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\)

=>\(\begin{cases}2m-2=m+1\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\Rightarrow\begin{cases}m=3\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\)

=>m=3

Để (d1) trùng với (d2) thì \(\frac{m}{2m}=\frac{m-1}{m+1}=\frac{3m+4}{m-4}\)

=>\(\frac{m-1}{m+1}=\frac{3m+4}{m-4}=\frac12\)

=>2(m-1)=m+1 và 2(3m+4)=m-4

=>2m-2=m+1 và 6m+8=m-4

=>m=3 và 5m=-12

=>m∈∅

15 tháng 6

2\(x\) - 6 = - 5\(x\) (\(x-3\))

2\(x\) - 6 = - 5\(x^2\) + 15\(x\)

5\(x^2\) - 15\(x\) + 2\(x\) - 6 = 0

5\(x^2\) - (15\(x-2x\)) - 6 = 0

5\(x^2\) - 13\(x\) - 6 = 0

Δ = 13\(^2\) - 4.5.(-6)

Δ = 169 + 20.6

Δ = 169 + 120

Δ = 289

Phương trình có hai nghiệm phân biệt:

\(x1\) = \(\frac{-\left(-13\right)+\sqrt{289}}{2.5}\)

\(x1\) = \(\frac{13+17}{10}\)

\(x1\) = \(\frac{30}{10}\)

\(x1\) = 3

\(x2=\) \(\frac{-\left(-13\right)-\sqrt{289}}{2.5}\)

\(x2=\frac{13-17}{10}\)

\(x2=\frac{-4}{10}\)

\(x2=-0,4\)

Vậy phương trình có hai nghiệm là: \(x1=3;x2=-0,4\)


2x-6=-5x(x-3)

=>\(2\left(x-3\right)+5x\left(x-3\right)=0\)

=>(x-3)(5x+2)=0

=>\(\left[\begin{array}{l}x-3=0\\ 5x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\\ x=-\frac25\end{array}\right.\)

10 tháng 6

là \(\sum\limits\)

10 tháng 6

Kí hiệu Sigma là Σ nhé!

Phương trình hoành độ giao điểm của (d1) và (d2) là:

2x+5=-4x-1

=>2x+4x=-5-1

=>6x=-6

=>x=-1

Thay x=-1 vào y=2x+5, ta được:

\(y=2\cdot\left(-1\right)+5=-2+5=3\)

Thay x=-1 và y=3 vào (d3), ta được:

\(\left(m+1\right)\cdot\left(-1\right)+2m-1=3\)

=>-m-1+2m-1=3

=>m-2=3

=>m=5

\(\frac{1}{A}=\frac{x+4}{4\sqrt{x}}\)

=>\(\frac{1}{A}-1=\frac{x+4-4\sqrt{x}}{4\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)^2}{4\sqrt{x}}\ge0\forall x\) thỏa mãn ĐKXĐ

=>\(\frac{1}{A}\ge1\forall x\) thỏa mãn ĐKXĐ

=>A<=1 với mọi x thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\sqrt{x}-2=0\)

=>\(\sqrt{x}=2\)

=>x=4(nhận)

Ta có: \(4\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

=>\(A=\frac{4\sqrt{x}}{x+4}\ge0\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

P
Phong
CTVHS
27 tháng 5

Hệ số `a` là `2/3`

31 tháng 5

giải nhanh giúp với