một cửa hàng bán vải,buổi sáng bán được 3/11 tấm vải, buổi chiều bán được 3/8 số vải còn lại thì tấm vải còn 16m. Hỏi tấm vải còn bao nhiêu mét và mỗi lần cửa hàng đã bán đi bao nhiêu mét?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: ĐKXĐ: x≠-2
Ta có: \(1+\frac{1}{x+2}=\frac{12}{x^3+8}\)
=>\(1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
=>\(\frac{x^3+8}{\left(x+2\right)\left(x^2-2x+4\right)}+\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
=>\(x^3+8+x^2-2x+4=12\)
=>\(x^3+x^2-2x=0\)
=>\(x\left(x^2+x-2\right)=0\)
=>x(x+2)(x-1)=0
=>\(\left[\begin{array}{l}x=0\\ x+2=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=-2\left(loại\right)\\ x=1\left(nhận\right)\end{array}\right.\)
b: ĐKXĐ: x<>2/7
Ta có: \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
=>\(\left(2x+3\right)\cdot\frac{3x+8+2-7x}{2-7x}=\left(x-5\right)\cdot\frac{3x+8+2-7x}{2-7x}\)
=>\(\left(2x+3\right)\cdot\frac{-4x+10}{2-7x}=\left(x-5\right)\cdot\frac{-4x+10}{2-7x}\)
=>\(\left(2x+3\right)\left(-4x+10\right)-\left(x-5\right)\left(-4x+10\right)=0\)
=>(-4x+10)(2x+3-x+5)=0
=>-2(2x-5)(x+8)=0
=>(2x-5)(x+8)=0
=>\(\left[\begin{array}{l}2x-5=0\\ x+8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac52\left(nhận\right)\\ x=-8\left(nhận\right)\end{array}\right.\)
Bài 4:
a: ĐKXĐ: x∉{2;-1}
Ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
=>\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x-2\right)\left(x+1\right)}+1\)
=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)
=>(x-2)(x+2)+3(x+1)=3+(x-2)(x+1)
=>\(x^2-4+3x+3=3+x^2-x-2\)
=>3x-1=-x+1
=>4x=2
=>\(x=\frac12\) (nhận)
b: ĐKXĐ: x∉{5;-6}
Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)
=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>2x+61=23x+61
=>-21x=0
=>x=0(nhận)
Bài 3:
a: ĐKXĐ: x∉{5;-6}
Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)
=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)
=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>2x+61=23x+61
=>-21x=0
=>x=0(nhận)
b: ĐKXĐ: x∉{3;-3}
Ta có: \(\frac{x^2-x}{x+3}-\frac{x_{}^2}{x-3}=\frac{7x^2-3x}{9-x^2}\)
=>\(\frac{\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-7x^2+3x}{\left(x-3\right)\left(x+3\right)}\)
=>\(\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)
=>\(x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)
=>0x=0(luôn đúng)
Vậy: x∉{3;-3}
Bài 2:
a: ĐKXĐ: x∉{-1;2}
ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3+x^2-x-2}{\left(x-2\right)\left(x+1\right)}\)
=>\(\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=x^2-x+1\)
=>\(x^2-4+3x+3=x^2-x+1\)
=>3x-1=-x+1
=>4x=2
=>\(x=\frac12\) (nhận)
b: ĐKXĐ: x∉{0;2}
ta có: \(\frac{5-x}{4x^2-8x}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
=>\(\frac{5-x}{4x\left(x-2\right)}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)
=>\(\frac{4\left(5-x\right)}{16x\left(x-2\right)}+\frac{7\cdot2x\cdot\left(x-2\right)}{8\cdot2x\cdot\left(x-2\right)}=\frac{8\left(x-1\right)}{8\cdot2x\cdot\left(x-2\right)}+\frac{2x}{8\cdot2x\cdot\left(x-2\right)}\)
=>4(5-x)+14x(x-2)=8(x-1)+2x
=>\(20-4x+14x^2-28x=8x-8+2x\)
=>\(14x^2-32x+20-10x+8=0\)
=>\(14x^2-42x+28=0\)
=>\(x^2-3x+2=0\)
=>(x-2)(x-1)=0
=>x=2(loại) hoặc x=1(nhận)
Bài 1:
a: ĐKXĐ: x∉{1/4;-1/4}
ta có: \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{6x+8}{16x^2-1}\)
=>\(\frac{-3}{4x-1}-\frac{2}{4x+1}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)
=>\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)
=>-3(4x+1)-2(4x-1)=-6x-8
=>-12x-3-8x+2=-6x-8
=>-20x-1=-6x-8
=>-14x=-7
=>x=1/2(nhận)
b: ĐKXĐ: x∉{1/5;3/5}
Ta có: \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
=>\(\frac{3}{5x-1}-\frac{2}{5x-3}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)
=>\(\frac{3\left(5x-3\right)}{\left(5x-1\right)\left(5x-3\right)}-\frac{2\left(5x-1\right)}{\left(5x-1\right)\left(5x-3\right)}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)
=>3(5x-3)-2(5x-1)=-4
=>15x-9-10x+2=-4
=>5x-7=-4
=>5x=3
=>x=3/5(loại)
Ta có:
\(4x^3+6x^2-12x+8=0\)
\(\Rightarrow2x^3+3x^2-6x+4=0\)
\(\Rightarrow(x+1)(2x^2+x-4)=0\)
\(\Rightarrow\begin{cases}x+1=0\\ 2x^2+x-4=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-1\\ x=\frac{-1\pm\sqrt{33}}{4}\end{cases}\)
Vậy \(x\in\left\lbrace-1;\dfrac{-1\pm\sqrt{33}}{4}\right\rbrace\)
Để (d1) cắt (d2) thì \(\frac{m}{2m}<>\frac{m-1}{m+1}\)
=>\(\frac{m-1}{m+1}<>\frac12\)
=>\(\frac{m-1}{m+1}-\frac12<>0\)
=>\(\frac{2m-2-m-1}{2\left(m+1\right)}<>0\)
=>\(\frac{m-3}{m+1}<>0\)
=>\(\begin{cases}m-3<>0\\ m+1<>0\end{cases}\Rightarrow m\notin\left\lbrace3;-1\right\rbrace\)
Để (d1)//(d2) thì \(\frac{m}{2m}=\frac{m-1}{m+1}<>\frac{3m+4}{m-4}\)
=>\(\begin{cases}\frac{m-1}{m+1}=\frac12\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\Rightarrow\begin{cases}2\left(m-1\right)=m+1\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\)
=>\(\begin{cases}2m-2=m+1\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\Rightarrow\begin{cases}m=3\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\)
=>m=3
Để (d1) trùng với (d2) thì \(\frac{m}{2m}=\frac{m-1}{m+1}=\frac{3m+4}{m-4}\)
=>\(\frac{m-1}{m+1}=\frac{3m+4}{m-4}=\frac12\)
=>2(m-1)=m+1 và 2(3m+4)=m-4
=>2m-2=m+1 và 6m+8=m-4
=>m=3 và 5m=-12
=>m∈∅
2\(x\) - 6 = - 5\(x\) (\(x-3\))
2\(x\) - 6 = - 5\(x^2\) + 15\(x\)
5\(x^2\) - 15\(x\) + 2\(x\) - 6 = 0
5\(x^2\) - (15\(x-2x\)) - 6 = 0
5\(x^2\) - 13\(x\) - 6 = 0
Δ = 13\(^2\) - 4.5.(-6)
Δ = 169 + 20.6
Δ = 169 + 120
Δ = 289
Phương trình có hai nghiệm phân biệt:
\(x1\) = \(\frac{-\left(-13\right)+\sqrt{289}}{2.5}\)
\(x1\) = \(\frac{13+17}{10}\)
\(x1\) = \(\frac{30}{10}\)
\(x1\) = 3
\(x2=\) \(\frac{-\left(-13\right)-\sqrt{289}}{2.5}\)
\(x2=\frac{13-17}{10}\)
\(x2=\frac{-4}{10}\)
\(x2=-0,4\)
Vậy phương trình có hai nghiệm là: \(x1=3;x2=-0,4\)
2x-6=-5x(x-3)
=>\(2\left(x-3\right)+5x\left(x-3\right)=0\)
=>(x-3)(5x+2)=0
=>\(\left[\begin{array}{l}x-3=0\\ 5x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\\ x=-\frac25\end{array}\right.\)
Phương trình hoành độ giao điểm của (d1) và (d2) là:
2x+5=-4x-1
=>2x+4x=-5-1
=>6x=-6
=>x=-1
Thay x=-1 vào y=2x+5, ta được:
\(y=2\cdot\left(-1\right)+5=-2+5=3\)
Thay x=-1 và y=3 vào (d3), ta được:
\(\left(m+1\right)\cdot\left(-1\right)+2m-1=3\)
=>-m-1+2m-1=3
=>m-2=3
=>m=5
\(\frac{1}{A}=\frac{x+4}{4\sqrt{x}}\)
=>\(\frac{1}{A}-1=\frac{x+4-4\sqrt{x}}{4\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)^2}{4\sqrt{x}}\ge0\forall x\) thỏa mãn ĐKXĐ
=>\(\frac{1}{A}\ge1\forall x\) thỏa mãn ĐKXĐ
=>A<=1 với mọi x thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{x}-2=0\)
=>\(\sqrt{x}=2\)
=>x=4(nhận)
Ta có: \(4\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
=>\(A=\frac{4\sqrt{x}}{x+4}\ge0\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
16m vải còn lại chính là 1-3/8 = 5/8 số vải còn lại sau khi bán buổi chiều. Vậy buổi chiều người đó có số mét vải là: 16:5.8=25,6(m)
25,6m này chính là 1-3/11 = 8/11 số vải còn lại sau khi đã bán buổi sáng. Vậy lúc đầu cửa hàng đó có: 25,6 :8.11 =35,2 (m) Đ/S:35,2m vải.
Bài này nếu bạn chưa hiểu lắm thì cứ vẽ sơ đồ ra là hiểu hết à! Chúc bạn học tốt nha!
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)