Quãng đường AB là 50km, một người đi từ A đến B. Đi được 1h30', người đó nghỉ 12'. Nếu muốn đến B đúng dự định thì phải tăng vận tốc lên 5km/h ở đoạn đường còn lại. Tính vận tốc ban đầu của người đó.
HELP ME!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-7}{x+2}\left(x\ne1;x\ne-2\right)\)
\(\Leftrightarrow\frac{3}{x^2+x-2}-\frac{1}{x-1}+\frac{7}{x+2}=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{7\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{x+2}{\left(x-1\right)\left(x+2\right)}+\frac{7x-7}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3-x-2+7x-7}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{6x-8}{\left(x-1\right)\left(x+2\right)}=0\)
=> 6x-8=0
<=> x=\(\frac{8}{6}=\frac{4}{3}\left(tmđk\right)\)
b) ĐKXĐ: x khác 2; x khác 4
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
<=> \(\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
<=> 2(x - 2) + (x - 1)(x - 4)(x - 2) = (x + 3)(x - 2)(x - 2)
<=> x^3 - 7x^2 + 16x - 12 = -x^3 + x^2 + 8x - 12
<=> x^2 - 7x^2 + 16x - 12 + x^3 - x^2 + 8x - 12 = 0
<=> 2x^3 - 8x^2 + 8x = 0
<=> 2x(x - 2)(x - 2) = 0
<=> 2x = 0 hoặc x - 2 = 0
<=> x = 0 (tmđk) hoặc x = 2 (ktmđk)
=> x = 2