K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

\(VP-VT=\frac{\left(a-b\right)^2}{2b\left(a^2+b^2\right)}+\frac{\left(b-c\right)^2}{2a\left(b^2+c^2\right)}+\frac{\left(c-a\right)^2}{2b\left(c^2+a^2\right)}\)

4 tháng 4 2020

Xấu hơn, nhưng khủng hơn:

Kẻ BH//AD(H∈CD)BH//AD(H∈CD), kẻ BD

Ta có:

+) AB//CD (hình thang ABCD)

⇒B2ˆ=D1ˆ⇒B2^=D1^ ( 2 góc so le trong )

+) BH//AD (cách vẽ)

⇒D2ˆ=B1ˆ⇒D2^=B1^ ( 2 góc so le trong)

Xét ΔDABΔDAB và ΔBHDΔBHD, ta có:

B2ˆ=D1ˆ(cmt)B2^=D1^(cmt)

BD : chung

D2ˆ=B1ˆ(cmt)D2^=B1^(cmt)

⇒⇒ ΔDABΔDAB = ΔBHDΔBHD (gcg)

⇒AD=BH⇒AD=BH

mà AD=3cm(gt)AD=3cm(gt)

⇒BH=3cm⇒BH=3cm

+) ΔDABΔDAB = ΔBHDΔBHD (cmt)

⇒AB=DH⇒AB=DH

mà AB=4cm(gt)AB=4cm(gt)

⇒DH=4cm⇒DH=4cm

+) DH+HC=DC(H∈DC)DH+HC=DC(H∈DC)

⇒4+HC=8⇒4+HC=8

⇒HC=4cm⇒HC=4cm

Xét ΔBHC,ΔBHC, ta có:

52=32+4252=32+42

⇒BC2=BH2+HC2⇒BC2=BH2+HC2 (Định lý Py-ta-go)

⇒ΔBHC⇒ΔBHC vuông tại H

⇒H1ˆ=900⇒H1^=900

+) AD//BH

⇒ADHˆ=H1ˆ⇒ADH^=H1^ (2 góc động vị)

⇒ADHˆ=900⇒ADH^=900

⇒⇒ Hình thang ABCD là hình thang vuông

Bạn ơi 900 là 90 độ nha

3 tháng 4 2020

\(D=\frac{4x+3}{x^2+1}\)

Min D : 

\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)

\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)

\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Max D : 

\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)

Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)

\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

3 tháng 4 2020

2(x-3)+5x(x-1)=5x2

<=> 2x-6+5x2-5x=5x2

<=> (2x-5x)+(5x2-5x2)=6

<=> -3x=6

<=> x=-2

2x - 6 + 5x- 5x = 5x2 <=> -3x - 6 = 0 <=> x + 2 = 0 <=> x = -2

3 tháng 4 2020

x(x + 2) = x(x + 3)

<=> x^2 + 2x = x^2 + 3x

<=> x^2 + 2x - x^2 - 3x = 0

<=> -x = 0

<=> x = 0