tính giá trị biểu thức
34x23xa+bx34+c
a=1/2 b+c b=34 c=56+56x300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 2000km =2000000 m
Vận tốc của Lan là:
2000000:10=200000(m/phút).
Bài này phi thực tế quá vậy em
không ai có thể 2 000 km trong 10 phút em nhá
24= 23 x 3 ; 36 = 32 x 22
BCNN(24;36)= 32 x 23 = 9 x 8 = 72
\(B\left(72\right)=\left\{0;72;144;216;288;360;...\right\}\)
\(x\in B\left(72\right)\) mà \(250\le x\le350\) vậy x=288
24= 23 x 3; 16=24
=> BCNN(24;16)=3 x 24 =3 x 16=48
B(48)={0;48;96;144;192;240;...}
Vì: 45<x<90 => x=48
Lời giải:
$x\vdots 75, x\vdots 90$ nên $x$ là BC(75,90)
$\Rightarrow x\vdots BCNN(75,90)$
$\Rightarrow x\vdots 450$
$\Rightarrow x\in\left\{0; 450;900;....\right\}$
Vì $x<100$ nên $x=0$
a) \(1.2+2.3+3.4+...+19.20\)
\(=\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
\(=3080\)
b) \(9+99+999+...+999...9\left(100so9\right)\)
\(\)\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(99so0\right)\)
\(=\left(10+10^2+10^3+...10^{99}\right)+\left(-1\right).100\)
\(=\left(1+10+10^2+10^3+...10^{99}\right)+\left(-1\right).101\)
\(=\dfrac{10^{99+1}-1}{99-1}-101\)
\(=\dfrac{10^{100}-1}{98}-101\)
\(=\dfrac{10^{100}-9899}{98}\)
c) \(999.9x222...2\) (100 số 9; 100 số 2)
\(9x2=18\)
\(99x22=2178\)
\(999x222=\text{221778}\)
\(9999x2222=22217778\)
\(99999x22222=2222177778\)
\(.........\)
Theo quy luật trên ta có 100 số 9 nhân 100 số 2:
\(999.9x222...2=222...21777...78\) (99 sô 2; 1 số 1; 99 số 7; 1 số 8)
( 98 . 7676 - 9898 . 76 ) : ( 2021. 2022 . 2023 ... 2030 )
= ( 98 . 76 . 101 - 98 . 101 . 76 ) : ( 2021 . 2022 . 2023 ... 2030 )
= 0 : ( 2021 . 2022 . 2023... 2030 )
= 0.
bạn phải tích cực học bài và giúp mấy bn owrhoir đáp may ra sẽ đc xu
\(P=a^7b^3-a^3b^7\)
\(P=a^3b^3\left(a^4-b^4\right)\)
\(P=a^3b^3\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
Ta sẽ chứng minh \(P\) chia hết cho 5 và cho 6.
a) CM \(5|P\). Kí hiệu \(\left(a;b\right)\) là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu \(a\equiv b\left(mod5\right)\) cũng coi như hoàn tất. \(a+b\equiv0\left(mod5\right)\) cũng như thế.
Do đó ta loại đi được các trường hợp \(\left(0;0\right),\left(1;1\right),\left(2;2\right),\left(3;3\right),\left(4;4\right)\) và \(\left(1;4\right),\left(2;3\right),\left(3;2\right),\left(4;1\right)\) và \(\left(0;1\right),\left(0;2\right),\left(0;3\right),\left(0;4\right),\left(1;0\right),\left(2;0\right),\left(3;0\right),\left(4;0\right)\)
Ta chỉ còn lại 8 trường hợp là \(\left(1;2\right),\left(1;3\right),\left(2;4\right),\left(3;4\right)\) và các hoán vị. Nếu \(\left(a;b\right)\equiv\left(1;2\right)\left(mod5\right)\) thì \(a^2+b^2=\left(5k+1\right)^2+\left(5l+2\right)^2=25k^2+10k+1+25l^2+20l+4=5P+5⋮5\)
Các trường hợp còn lại xét tương tự \(\Rightarrow5|P\).
b) CM \(6|P\). Ta thấy \(a^3b^3\left(a-b\right)\left(a+b\right)\) luôn là số chẵn (nếu \(a\equiv b\left(mod2\right)\) thì \(2|a-b\), còn nếu \(a\ne b\left(mod2\right)\) thì \(2|a^3b^3\).
Đồng thời, cũng dễ thấy \(3|P\) vì nếu \(a\) hay \(b\) chia hết cho 3 thì coi như xong. Nếu \(a\equiv b\left(mod3\right)\) cũng xong. Còn nếu \(a+b\equiv0\left(mod3\right)\) thì cũng hoàn tất.
Suy ra \(6|P\)
Từ đó suy ra \(30|P\)
Ta sẽ chứng minh chia hết cho 5 và cho 6.
a) CM . Kí hiệu là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu cũng coi như hoàn tất. cũng như thế.
Do đó ta loại đi được các trường hợp và và
Ta chỉ còn lại 8 trường hợp là và các hoán vị. Nếu thì
Các trường hợp còn lại xét tương tự .
b) CM . Ta thấy luôn là số chẵn (nếu thì , còn nếu thì .
Đồng thời, cũng dễ thấy vì nếu hay chia hết cho 3 thì coi như xong. Nếu cũng xong. Còn nếu thì cũng hoàn tất.
Suy ra
Từ đó suy ra
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
a = \(\dfrac{1}{2}\)b + c = 34 \(\times\) \(\dfrac{1}{2}\) + 56 + 56 \(\times\) 300 = 16873
A = 34 \(\times\) 23 \(\times\) 16873 + 34 \(\times\) 34 + 56 + 56 \(\times\) 300
A = 13194686 + 1156 + 56 + 16800
A = 13212698