Cho \(x,y>0\)và \(x+y=1\). Tìm giá trị lớn nhất của biểu thức: \(A=x^3y^3\left(x^2+y^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x=\frac{\sqrt{5}-1}{2}\Rightarrow2x=\sqrt{5}-1\)
\(\Leftrightarrow2x+1=\sqrt{5}\)
\(\Rightarrow\left(2x+1\right)^2=5\)
\(\Rightarrow4x^2+4x+1=5\Rightarrow x^2+x-1=0\)
Khi đó ta có :
\(B=\left(4x^5+4x^4-5x^3+2x-2\right)^2+2021\)
\(=\left[\left(4x^5+4x^4-4x^3\right)-\left(x^3+x^2-x\right)+\left(x^2+x-1\right)-1\right]^2+2021\)
\(=\left[4x^3\left(x^2-x+1\right)-x\left(x^2+x-1\right)+\left(x^2+x-1\right)-1\right]^2+2021\)
\(=\left(-1\right)^2+2021=2022\)
Vậy \(B=2022\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(\sqrt{2+\sqrt{2+\sqrt{3}}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{2^2-\left(\sqrt{3}\right)^2}=\sqrt{4-3}=1\)
Vì \(9>5\)\(\Rightarrow\sqrt{9}>\sqrt{5}\)\(\Rightarrow3>\sqrt{5}\)\(\Rightarrow3-\sqrt{5}>0\)
mà \(3+\sqrt{5}>0\)
\(\Rightarrow\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right).\sqrt{3-\sqrt{5}}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2.\left(3+\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)^2.\left(3-\sqrt{5}\right)}\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=\sqrt{\left(9-5\right)\left(3-\sqrt{5}\right)}+\sqrt{\left(9-5\right).\left(3+\sqrt{5}\right)}\)
\(=\sqrt{4.\left(3-\sqrt{5}\right)}+\sqrt{4.\left(3+\sqrt{5}\right)}\)
\(=2.\sqrt{3-\sqrt{5}}+2.\sqrt{3+\sqrt{5}}\)
1. Ta có: \(9< 10\)\(\Rightarrow\sqrt{9}< \sqrt{10}\)\(\Rightarrow3< \sqrt{10}\)\(\Rightarrow3-\sqrt{10}< 0\)(1)
Vì \(3< \sqrt{10}\)\(\Rightarrow2.3< 2\sqrt{10}\)\(\Rightarrow6< 2\sqrt{10}\)\(\Rightarrow2\sqrt{10}-6>0\)(2)
Từ (1) và (2) \(\Rightarrow\sqrt{\left(3-\sqrt{10}\right)^2}+\sqrt{\left(2\sqrt{10}-6\right)^2}\)
\(=\left|3-\sqrt{10}\right|+\left|2\sqrt{10}-6\right|\)
\(=\sqrt{10}-3+2\sqrt{10}-6=3\sqrt{10}-9\)
4. Vì \(x>0\)\(\Rightarrow x.\sqrt{\frac{9}{x}}+5\sqrt{x}=\sqrt{x^2.\frac{9}{x}}+5\sqrt{x}=\sqrt{9x}+5\sqrt{x}\)
\(=3\sqrt{x}+5\sqrt{x}=8\sqrt{x}\)
Ta có :
\(A=x^3y^3.\left(x^2+y^2\right)\)\(=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)
Áp dụng BĐT : \(ab\le\left(\frac{a+b}{2}\right)^2\) ta được :
\(A=\frac{1}{2}\cdot\left(xy\right)\cdot\left(xy\right)\cdot\left(2xy\right)\cdot\left(x^2+y^2\right)\)
\(\le\frac{1}{2}\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{x+y}{2}\right)^2\cdot\left(\frac{2xy+x^2+y^2}{2}\right)^2\)
\(=\frac{1}{2}\cdot\frac{\left(x+y\right)^4}{16}\cdot\frac{\left(x+y\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{16}\cdot\frac{1}{4}=\frac{1}{128}\)
Nên : \(A\le\frac{1}{128}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min \(A=\frac{1}{128}\) khi \(x=y=\frac{1}{2}\)