K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

5 tháng 7 2021

Vậy nếu làm 1 mình thì lớp 9A làm xong công việc trong 5 giờ , lớp 9B làm xong trong 7 giờ

10 tháng 4 2021

a, \(\hept{\begin{cases}4x-y=7\\x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x-7\left(1\right)\\x+3y=5\left(2\right)\end{cases}}\)

Thế (1) vào (2) ta được : \(x+3\left(4x-7\right)=5\Leftrightarrow x+12x-21=5\)

\(\Leftrightarrow13x=26\Leftrightarrow x=2\)

Theo (1) ta có : \(y=8-7=1\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

10 tháng 4 2021

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

Xét \(\hept{\begin{cases}4x^2+z^2\ge4xz\\4y^2+z^2\ge4yz\\2x^2+2y^2\ge4xy\end{cases}}\)

\(\Leftrightarrow2\left(3x^2+3y^2+z^2\right)\ge4\left(xy+yz+zx\right)\)

\(\Leftrightarrow3x^2+3y^2+z^2\ge10\)

dấu bằng xảy ra khi và chỉ khi \(x=y=1\)và \(z=2\)

10 tháng 4 2021
dốt thế lên mà hỏi thầy giáo

a

Đường tròn (O), đường kính AH có 

AMH^=90∘⇒HM⊥AB.

ΔAHB vuông tại H có 

HM⊥AB⇒AH2=AB.AM.

Chứng minh tương tự AH2=AC.AN.

\(\Rightarrow\) AB.AM=AC.AN.

B

Theo câu a ta có 

AB.AM=AC.AN⇒AMAC=ANAB.

Tam giác AMN và tam giác ACB có MAN^ chung và AMAC=ANAB.

⇒ΔAMN∼ΔACB (c.g.c).

\(\widehat{ACB}\)

c.

Tam giác ABC vuông tại A có I là trung điểm của 

BC⇒IA=IB=IC.

⇒ΔIAC cân tại 

Theo câu b ta có \(\widehat{AMN}\)
 

Mà \(\widehat{BAD}\)

\(\widehat{BAD}\)

BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘.

Ta chứng minh ΔABC vuông tại A có 

AH⊥BC⇒AH2=BH.CH.

Mà 

\(\Rightarrow\) BMNC là tứ giác nội tiếp.

10 tháng 4 2021

TRẢ HIỂU GÌ ?????????????????????

Gọi giá niêm yết của sản phẩm là x đồng (x>0).

Số tiền người đó phải trả khi chưa quét mã là: x+10%.x=x+0,1x=1,1x (đồng).

Số tiền giảm giá khi quét mã là 2%.x=0,02x (đồng)

Theo bài ra ta có phương trình: 1,1x−0,02x= 2 430 

000⇔1,08x= 2 430 000

⇔x=2 250 000 đồng.

Vậy giá niêm yết của sản phẩm đó là 2 250 000 đồng.

5 tháng 5 2021

                                        Giải

Gọi giá niêm yết của sản phẩm là : x ( đồng , x > 0)

Số tiền người đó phải trả khi chưa quét mã là : x + 10%x = 1,1x ( đồng )

Số tiền giảm giá khi quét mã là : 2%x = 0,02x ( đồng )

Theo bài ra ta có phương trình :

1,1x - 0,02x = 2430000

⇔ 1,08x = 2430000

⇔ x = 2250000 ( đồng ) (TM)

Vậy giá niêm yết của sản phẩm là 2250000 đồng

10 tháng 4 2021

Bài 1 : 

Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương 

\(t+t^2-6=0\)

Ta có : \(\Delta=1+24=25\)

\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)

TH1 : \(x^2=-3\)( vô lí ) 

TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)

5 tháng 5 2021

a) \(x^2+x^4-6=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

⇒ t + \(t^2\) - 6 = 0 

⇒ \(t^2+t-6=0\)

⇒ Δ = \(1^2-4.\left(-6\right)\)

        = 25

x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)

x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)

Thay  \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)

Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)

b)   (d) : y = 4x +1 - m

      (p) : y = \(x^2\)

Xét phương trình hoành độ giao điểm

\(x^2=4x+1-m\)

⇒ \(x^2-4x+m-1=0\)

Δ' = 4 - m + 1

    = 5 - m

Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0

5 - m > 0 

⇒ m < 5

Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt

Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)

Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)

và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)

Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)

⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)

⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)   

Vậy m = - 4 thì TMĐKBT

 

9 tháng 5 2021

-5