Bài 5 (trang 7 SGK Toán 9 Tập 1)
Tính cạnh một hình vuông, biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3,5m và chiều dài 14m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Ta có: = 121 nên căn bậc hai số học của 121 là 11. Từ đó suy ra căn bậc hai của 121 là 11 và -11.
– Tương tự: căn bậc hai số học của 144; 169; 225; 256; 324; 361; 400 lần lượt là: 12; 13; 15; 16; 18; 19; 20.
Căn bậc hai của 144; 169; 225; 256; 324; 361; 400 lần lượt là: 12 và -12; 13 và -13; 15 và -15; 16 và -16; 18 và -18; 19 và -19; 20 và -20.
\(P=\frac{1}{5xy}+\frac{5}{x+2y+5}=\frac{1}{5xy}+\frac{5}{\left(x+y\right)+y+5}\ge\frac{1}{5xy}+\)\(\frac{5}{y+8}\)
\(\Leftrightarrow P\ge\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{y+8}+\frac{y+8}{20}-\frac{xy+y+8}{20}\)
Lại có \(\frac{xy+y+8}{20}=\frac{y\left(x+1\right)+8}{20}\le\frac{\frac{\left(x+y+1\right)^2}{4}}{20}\le\frac{3}{5}\)
khi đó \(p\ge\left(\frac{1}{5xy}+\frac{xy}{20}\right)+\left(\frac{5}{y+8}+\frac{y+8}{20}\right)-\frac{xy+y+8}{20}\)
\(\Leftrightarrow P\ge\frac{1}{5}+1-\frac{3}{5}\)
\(\Leftrightarrow P\ge\frac{3}{5}\)
vậy \(P_{min}=\frac{3}{5}\Rightarrow x=1,y=2\)
a) Chứng minh tứ giác IEHFIEHF nội tiếp được đường tròn.
Ta có ∠AEB=∠AFB=900∠AEB=∠AFB=900 (góc nội tiếp chắn nửa đường tròn) ;
⇒AE⊥EB,AF⊥EB⇒AE⊥EB,AF⊥EB hay BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900.
Xét tứ giác IEHFIEHF có: ∠IEH+∠IFH=900+900=1800⇒∠IEH+∠IFH=900+900=1800⇒ Tứ giác IEHFIEHF là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).
b) Chứng minh ∠AIH=∠ABE∠AIH=∠ABE.
Cách 1:
Ta có IEHFIEHF là tứ giác nội tiếp (cmt) ⇒∠EIH=∠EFH⇒∠EIH=∠EFH (hai góc nội tiếp cùng chắn cung EHEH)
Hay ∠AIH=∠EFA.∠AIH=∠EFA.
Mà ∠EBA=∠EFA∠EBA=∠EFA (hai góc nội tiếp cùng chắn cung AFAF của (O)(O))
⇒∠AIH=∠ABE(=∠EFH).(dpcm)⇒∠AIH=∠ABE(=∠EFH).(dpcm)
Cách 2:
Xét tam giác IABIAB có hai đường cao AF,BEAF,BE cắt nhau tại H⇒HH⇒H là trực tâm tam giác IABIAB.
⇒IH⊥AB⇒IH⊥AB hay IK⊥ABIK⊥AB tại KK.
Xét tam giác vuông AIKAIK có: ∠AIK+∠IAK=900⇔∠AIH+∠IAB=900∠AIK+∠IAK=900⇔∠AIH+∠IAB=900.
Xét tam giác vuông ABEABE có: ∠ABE+∠EAB=900⇔∠ABE+∠IAB=900∠ABE+∠EAB=900⇔∠ABE+∠IAB=900.
Do đó ∠AIH=∠ABE∠AIH=∠ABE.
c) Chứng minh cos∠ABP=PK+BKPA+PBcos∠ABP=PK+BKPA+PB.
Nối PA,PBPA,PB ta có ∠APB=900∠APB=900 (góc nội tiếp chắn nửa đường tròn).
Xét tam giác BPKBPK và tam giác BAPBAP có:
∠ABP∠ABP chung;
∠BKP=∠BPA=900;∠BKP=∠BPA=900;
⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB (hai cặp cạnh tương ứng tỉ lệ).
Áp dụng tính chất dãy tỉ số bằng nhau ta có: PKPA=BKPB=PK+BKPA+PBPKPA=BKPB=PK+BKPA+PB (1).
Xét tam giác vuông BKPBKP ta có: cos∠ABP=cos∠KPB=BKPBcos∠ABP=cos∠KPB=BKPB (2).
Từ (1) và (2) ta có cos∠ABP=PK+BKPA+PBcos∠ABP=PK+BKPA+PB.
d) Gọi SS là giao điểm cuả tia BFBF và tiếp tuyến tại AA của nửa đường tròn (O)(O). Khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK.
Xét tứ giác AEHKAEHK có: ∠AEH+∠AKH=900+900=1800⇒∠AEH+∠AKH=900+900=1800⇒ Tứ giác AEHKAEHK là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).
⇒∠HEK=∠HAK=FAB⇒∠HEK=∠HAK=FAB (hai góc nội tiếp cùng chắn cung HKHK);
Lại có ∠FAB=∠FEB∠FAB=∠FEB (hai góc nội tiếp cùng chắn cung FBFB của (O)(O));
⇒∠HEK=∠FEB⇒EB⇒∠HEK=∠FEB⇒EB là phân giác của ∠FEK∠FEK ⇒∠FEK=2∠FEB=2∠FAB⇒∠FEK=2∠FEB=2∠FAB (3).
Ta có: {IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒{IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒ Tứ giác AHISAHIS là hình thang (Tứ giác có 2 cạnh đối song song).
Khi AHISAHIS là tứ giác nội tiếp thì ∠SAH+∠SIH=1800∠SAH+∠SIH=1800 (tổng hai góc đối của tứ giác nội tiếp) ;
Mà ∠SAH+∠AHI=1800∠SAH+∠AHI=1800 (hai góc trong cùng phía bù nhau) ;
⇒∠SIH=∠AHI⇒⇒∠SIH=∠AHI⇒ Tứ giác AHISAHISlà hình thang cân.
Do đó ∠ISA=∠SAH∠ISA=∠SAH (Tính chất hình thang cân) hay ∠BSA=∠SAF∠BSA=∠SAF.
Mà ∠SAF=∠SBA∠SAF=∠SBA (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AFAF );
⇒∠BSA=∠SBA⇒ΔSAB⇒∠BSA=∠SBA⇒ΔSAB vuông cân tại A⇒∠SBA=450A⇒∠SBA=450.
⇒ΔFAB⇒ΔFAB vuông cân tại F⇒∠FAB=450F⇒∠FAB=450 (4).
Từ (3) và (4) ta có ∠FEK=2∠FAB=2.450=900∠FEK=2∠FAB=2.450=900.
Vậy khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK(đpcm).
a, ta có : góc AEB = 90 độ
suy ra góc HEI = 90 độ
tương tự ta có góc HFI = 90 độ
suy ra : góc HEI + góc HFI = 180 độ
suy ra IEHF nội tiếp đường tròn
b, góc AIH = AFE
mà góc ABE = góc AFE
suy ra góc AIH = góc ABE
a) x^2 - 3x + 2 = 0
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)
=> pt có 2 nghiệm pb
\(x_1=\frac{-\left(-3\right)+1}{2}=2\)
\(x_2=\frac{-\left(-3\right)-1}{2}=1\)
a) Dễ thấy phương trình có a + b + c = 0
nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2
b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)
Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3
Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2
Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )
Giải chi tiết:
+) Ta có hình trụ có : htru=6cm,rtru=1cmhtru=6cm,rtru=1cm
Vtru=πrtru2htru=π.12.6=6π(cm3)Vtru=πrtru2htru=π.12.6=6π(cm3)
+) Ta có: rcau=rtru=1(cm)rcau=rtru=1(cm)
Vcau=43πr3cau=43π.13=43π(cm3)Vcau=43πrcau3=43π.13=43π(cm3)
Theo hình vẽ ta có: hnon=htru−2rcau=6−2=4(cm)hnon=htru−2rcau=6−2=4(cm)
Vnon=13πr2non.hnon=13.π.12.4=43π(cm3)Vnon=13πr2non.hnon=13.π.12.4=43π(cm3)
Khi đó ta có thể tích của lượng nước còn lại trong chiếc cốc là:
V=Vtru−Vnon−Vcau=6π−43π−43π=103π(cm3)V=Vtru−Vnon−Vcau=6π−43π−43π=103π(cm3)
Chọn D.
Diện tích hình chữ nhật là : \(14\times3,5=49\)( m2 )
Do diện tích hình chữ nhật bằng diện tích hình vuông nên
Cạnh hình vuông là : \(\sqrt{49}=7\)m
Vậy cạnh hình vuông là 7m với diện tích hình vuông là 49 m2
Diện tích hình chữ nhật là :
14 * 3.5 = 49 (m2)
Vì diện tích hình vuông bằng diện tích hình chữ nhật nên diện tích hình vuông bằng 49
=> Cạnh hình vuông bằng :
\(\sqrt{49}\) = 7 (m)