cho biểu thức:
(a+b)/(a-b)=(c+a)/(c-a) CMR:a^2=bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do thương của phép chia là 2 nên số bị chia gấp số chia 5 lần
Ta có sơ đồ:
Số bị chia: 5 phần
Số chia: 1 phần
Tổng số phần bằng nhau là:
`5+1=6` (phần)
Giá trị 1 phần là:
`288 : 6 = 48`
Số bị chia là:
`48` x `5 = 240`
Số chia là:
`240 : 5 = 48`
Đáp số: ...
\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
\(\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+\left(\dfrac{x+4}{96}+1\right)=0\)
\(\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)
\(\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
\(x+100=0\) (do \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}>0\))
\(x=-100\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne4\end{matrix}\right.\)
\(P=\left(\dfrac{2}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Để P=3/2 thì \(\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{3}{2}\)
=>\(3\left(\sqrt{x}-2\right)=2\sqrt{x}\)
=>\(3\sqrt{x}-2\sqrt{x}=6\)
=>\(\sqrt{x}=6\)
=>x=36(nhận)
a: Khi x=707228 thì x+87002=707228+87002=794230
b: Khi x=100 thì 2035xX=2035x100=203500
c: Khi x=84560 thì x:2=84560:2=42280
c: Khi x=304110 thì 564320-x=564320-304110=260210
Xét ΔEDI có \(\widehat{EIF}\) là góc ngoài
nên \(\widehat{EIF}=\widehat{IED}+\widehat{IDE}\)
=>\(\widehat{IED}=110^0-90^0=20^0\)
EI là phân giác của góc DEF
=>\(\widehat{DEF}=2\cdot\widehat{DEI}=40^0\)
ΔDEF vuông tại D
=>\(\widehat{DEF}+\widehat{DFE}=90^0\)
=>\(\widehat{DFE}=90^0-40^0=50^0\)
Sửa đề: \(\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{2^{12}\cdot9^6+8\cdot9^5}\)
\(=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^{12}+2^3\cdot3^{10}}\)
\(=\dfrac{2^{12}\cdot3^4\left(3-1\right)}{2^3\cdot3^{10}\left(2^9\cdot3^2+1\right)}\)
\(=\dfrac{2^9}{3^6}\cdot\dfrac{2}{1028\cdot9+1}=\dfrac{2^{10}}{729\left(1028\cdot9+1\right)}\)
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
=>(a+b)(c-a)=(a-b)(c+a)
=>\(ac-a^2+bc-ba=ac+a^2-bc-ab\)
=>\(-a^2+bc=a^2-bc\)
=>\(-2a^2=-2bc\)
=>\(a^2=bc\)
\[
\frac{a+b}{a-b} = \frac{c+a}{c-a}
\]
Ta sẽ thực hiện phép nhân chéo:
\[
(a+b)(c-a) = (a-b)(c+a)
\]
Khai triển hai vế của phương trình:
- Vế trái:
\[
(a+b)(c-a) = ac - a^2 + bc - ab
\]
- Vế phải:
\[
(a-b)(c+a) = ac + a^2 - bc - ab
\]
Từ đó ta có:
\[
ac - a^2 + bc - ab = ac + a^2 - bc - ab
\]
Giản lược hai vế:
\[
-a^2 + bc = a^2 - bc
\]
Chuyển các hạng tử về cùng một vế:
\[
-a^2 + bc - a^2 + bc = 0
\]
\[
-2a^2 + 2bc = 0
\]
Chia cả hai vế cho 2:
\[
-a^2 + bc = 0
\]
Chuyển \(-a^2\) qua vế phải:
\[
bc = a^2
\]