K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

A H B C

Xét \(\Delta\)ABH và \(\Delta\)CAH có:\(\widehat{AHB}=\widehat{AHC}=90^0;\widehat{BAH}=\widehat{HCA}\)

\(\Rightarrow\Delta ABH~\Delta CAH\left(g.g\right)\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH\cdot CH\)

\(\Rightarrowđpcm\)

17 tháng 6 2020

Dễ thấy theo BĐT Bunhiacopski ta dễ có:

\(\left(2x+y\right)^2=\left(2\cdot x+1\cdot y\right)^2\le5\left(x^2+y^2\right)=5\)

Vậy ta có đpcm

21 tháng 6 2020

Giải thích cho dễ hiểu dc ko bạn

17 tháng 6 2020

Áp dụng BĐT AM - GM cho các cặp số không âm, ta được:

\(a^2+b^2\ge2ab\)(1)

\(a^2+1\ge2a\)(2)

\(b^2+1\ge2b\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)

\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = 1

17 tháng 6 2020

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( đúng )

=> đpcm

17 tháng 6 2020

Cách 1: 

Theo BĐT AM - GM, ta được: \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1\)

\(\ge2+2\sqrt{\frac{a}{b}.\frac{b}{a}}=2+2=4\)

Đẳng thức xảy ra khi a = b

Cách 2;

Áp dụng BĐT AM - GM, ta được:

\(a+b\ge2\sqrt{ab}\)(1)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)(2)

Nhân theo từng vế của (1) và (2), ta được:

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

Đẳng thức xảy ra khi a = b

17 tháng 6 2020

Ngắn hơn nhưng phải chứng minh lại :V

Theo Bunhiacopski dạng phân thức:

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(a+b\right)\cdot\frac{4}{a+b}=4\)

Đẳng thức xảy ra tại a=b

17 tháng 6 2020

2x^2 – 7x + 3 = 0

17 tháng 6 2020

Ta có: \(\frac{a+b}{2}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\Leftrightarrow\frac{a+b}{2}\ge\frac{2}{\frac{a+b}{ab}}\)

\(\Leftrightarrow\frac{a+b}{2}\ge\frac{2ab}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi a = b

17 tháng 6 2020

a) 

Xét \(\Delta\)HBA và \(\Delta\)HAC 

có: ^BHA = ^AHC = 90 độ 

^HBA = ^HAC ( cùng phụ ^HAB ) 

=> \(\Delta\)HBA ~ \(\Delta\)HAC 

b) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)cm

=> \(S\left(ABC\right)=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

=> \(AH=\frac{6.8}{10}=4,8\)cm

c) Tích chất phân giác

=> \(\frac{AB}{BC}=\frac{AD}{DC}\Rightarrow\frac{AD}{6}=\frac{DC}{10}=\frac{AD+DC}{6+10}=\frac{8}{16}=\frac{1}{2}\)

=> AD = 3 cm; DC = 5 cm 

Theo pi ta go trong \(\Delta\)ADB => \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=3\sqrt{5}\)

17 tháng 6 2020

                                                A B C D H

a) \(\Delta ABC\)vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)

\(\Delta AHC\)vuông tại H \(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)

\(\Rightarrow\widehat{HAC}=\widehat{ABC}\)

Xét \(\Delta HBA\)và \(\Delta HAC\)có:+) \(\widehat{AHB}=\widehat{AHC}=90^o\)

                                                    +) \(\widehat{HAC}=\widehat{ABC}\)

\(\Rightarrow\Delta HBA~\Delta HAC\left(g-g\right)\)( đpcm )

b) \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

Xét \(\Delta ABC\)có: \(S=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)

c) \(\Delta ABC\)có BD là phân giác \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{6}{10}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)

\(\Rightarrow DC=5.1=5\)\(AD=3.1=3\)

Xét \(\Delta ABD\)vuông tại A \(\Rightarrow AB^2+AD^2=BD^2\)( định lý Pytago )

\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=\sqrt{54}=3\sqrt{6}\)

17 tháng 6 2020

Đặt: b + c - a = x; a + b - c = y; a + c - b = z

khi đó: x + y + z = a + b + c 

\(a=\frac{y+z}{2};b=\frac{z+x}{2};c=\frac{x+y}{2}\)

\(b-c=\frac{y-z}{2};c-a=\frac{z-x}{2};a-b=\frac{x-y}{2}\)

Ta cần chứng minh: 

\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)(1)

<=> \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2+b\left(c-a\right)\left(a+c-b\right)^2=0\)

Hay mình cần chứng minh: 

\(\frac{y+z}{2}.\frac{y-z}{2}.x^2+\frac{z+x}{2}.\frac{z-x}{2}.y^2+\frac{x+y}{2}.\frac{x-y}{2}.z^2=0\)

<=> \(\left(y^2-z^2\right)x^2+\left(z^2-x^2\right)y^2+\left(x^2-y^2\right)z^2=0\)

<=> \(0=0\)luôn đúng

Vậy (1) đúng

23 tháng 6 2020

\(P=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(\Rightarrow3-P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)

\(\ge\frac{9}{a+b+c+3}=\frac{3}{2}\)

\(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1/3

2 tháng 7 2020

câu 5đâu có thấy đâu

6 tháng 4 2021

Dưới cùng ý