K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

Thông cảm nhá trời nắng mình hơi ngại đánh máy =))

Vào TKHĐ của mình để xem hình ảnh nhé !

24 tháng 6 2020

Giải: 

a) Xét \(\Delta\)ADF và \(\Delta\)EDC  có: 

^DAF = ^DEC = 90 độ 

^ADF = ^EDC  ( đối đỉnh ) 

=> \(\Delta\)ADF ~ \(\Delta\)EDC ( g-g) 

=> AD/DE = DF/DC

=> AD.DC = DE.DF

b) Xét \(\Delta\)BEF  và \(\Delta\)DEC 

có: ^BEF = ^DEC = 90 độ 

^BFE = ^ECD ( theo (a) )

=> \(\Delta\)BEF~ \(\Delta\)DEC

=> BE/EF = DE/EC => BE.EC= DE/EF

c) BA.BF + DC.AC

=BA(BA + AF) + ( AC - AD ) DC 

= AB^2 + AC^2 + ( BA.AF - AD.DC) 

Dễ cm \(\Delta\)ADF ~ \(\Delta\)ABC 

=> AD/AB = AF / AC

=> AD.AC = AB .AF 

=> AD.AC - AB .AF =0 

Vậy BA.BF + DC.AC = AB^2 + AC^2 =BC^2

5 tháng 5 2021

Gọi số cần tìm là \(\overline{ab}\) theo đề bài

\(\overline{ba}-\overline{ab}=27\Rightarrow10b+a-10a-b=27\)

\(\Rightarrow9b-9a=27\Rightarrow b-a=3\) mà \(a+b=9\)

\(\Rightarrow b=6;a=3\)

23 tháng 6 2020

Ta có 

\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)

\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)

                                                                            \(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)

\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)

\(=>=3+\frac{3+3}{2}=6\)

=> dpcm

cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm

23 tháng 6 2020

(a - b)^2 = a^2 - 2ab + b^2 > 0

(b - c)^2 = b^2 - 2bc + c^2 > 0

(c - a)^2 = c^2 - 2ac + a^2 > 0

=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac 

=> 6 > 2ab + 2bc + 2ac

=> 3 > ab + bc + ac    (1)

(a - 1)^2 = a^2 - 2a + 1 > 0

(b - 1)^2 = b^2 - 2b + 1 > 0

(c - 1)^2 = c^2 - 2c + 1 > 0

=>  a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c

=> 6 > 2a + 2b + 2c

=> 3 > a + b + c   và (1)

=> 6 > ab + ac + bc + a + b + c

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(\Leftrightarrow\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-3}{2018}-1\)

\(\Leftrightarrow\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow x-2020=0\)

\(\Leftrightarrow x=2020\)

23 tháng 6 2020

\(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)

\(< =>\frac{x-5}{2015}-1+\frac{x-4}{2016}-1=\frac{x-3}{2017}-1+\frac{x-2}{2018}-1\)

\(< =>\frac{x-5-2015}{2015}+\frac{x-4-2016}{2016}=\frac{x-3-2017}{2017}+\frac{x-2-2018}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}=\frac{x-2020}{2017}+\frac{x-2020}{2018}\)

\(< =>\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)

\(< =>\left(x-2020\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)

\(< =>x-2020=0< =>x=2020\)