K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa Bài 3 nhé ! Lỗi kĩ thuật đánh máy )):

\(x^2-2mx-6=0\)

Phần b đằng sau .... Đạt GTNN  nhé, đánh máy lỗi quá.

4 tháng 7 2020

Bài làm:

#Tìm Max của biểu thức:

\(A=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}-\frac{\left(2x+1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow A\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy \(Max\left(A\right)=4\Leftrightarrow x=-\frac{1}{2}\)

#Tìm Max và Min của B:

Tìm Min

\(B=\frac{2x}{x^2+1}=\frac{\left(x^2+2x+1\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\left(x+1\right)^2}{x^2+1}\ge0\left(\forall x\right)\)

\(\Rightarrow B\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+1\right)^2\ge0\Rightarrow x=-1\)

Vậy \(Min\left(B\right)=-1\Leftrightarrow x=-1\)

Tìm Max

\(B=\frac{2x}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1\right)}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\Rightarrow-\frac{\left(x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow B\le1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Max\left(B\right)=1\Leftrightarrow x=1\)

Sao dạo này nhìu bạn đăng mấy câu như vậy lên thế nhỉ?

a, Ta có\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)

\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)

\(\Leftrightarrow x^2+9x+6\ge x^2-4\)

\(\Leftrightarrow9x+10\ge0\Leftrightarrow x\ge-\frac{10}{9}\)

3 tháng 7 2020

\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)

\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)

\(\Leftrightarrow x^2+6x+3x-x^2\ge-4-9+3\)

\(\Leftrightarrow9x\ge-10\)

\(\Leftrightarrow x\ge-\frac{10}{9}\)

Ta có \(4-\left|2x+1\right|=3x+3\)

\(\Leftrightarrow\left|2x+1\right|=3x+1\)

\(\Leftrightarrow\hept{\begin{cases}-2x-1=3x+1\\2x+1=3x+1\end{cases}\Leftrightarrow\hept{\begin{cases}-5x=2\\-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{2}{5}\\x=0\end{cases}}}\)(tm)

Vậy BFT có nghiệm .... 

3 tháng 7 2020

I don`t no

3 tháng 7 2020

\(a^3+b^3+c^3-\Sigma_{cyc}\left(\frac{a+b}{2}\right)^3=\frac{3}{8}\left[\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\right]\)