Giải pt nghiệm nguyên \(x^2+x+6=y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(x^2+x+1>0,\forall x.\)
TXĐ: R.
\(A=\frac{x+1}{x^2+x+1}\)
<=> \(Ax^2+Ax+A=x+1\)
<=> \(Ax^2+\left(A-1\right)x+A-1=0\)(1)
+) A = 0 => x = -1
+) A khác 0. Xem (1) là phương trình ẩn x và tham số A.
\(\Delta=\left(A-1\right)^2-4A\left(A-1\right)=-3A^2+2A+1\)
(1) có nghiệm <=> \(\Delta\ge0\Leftrightarrow-3A^2+2A+1\ge0\)
<=> \(-\frac{1}{3}\le A\le1\)
=> min A = -1/ 3 đạt tại x = -2 ( thay A =-1/3 vào phương trình (1) để tìm x )
\(\Leftrightarrow16-x+2\sqrt{\left(16-x\right)\left(9+x\right)}+9+x=49\)
\(\Leftrightarrow2\sqrt{\left(16-x\right)\left(9+x\right)}=24\)
\(\Leftrightarrow\left(16-x\right)\left(9+x\right)=144\)
\(\Leftrightarrow7x-x^2=0\)
\(\Leftrightarrow x\left(7-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=7\end{cases}}\)
đặt ĐK cửa x
Do 2 vế không âm nên bình phương hai vế ta có
25 + 2\(\sqrt{\left(16-x\right)\left(9+x\right)}=49\)
\(\sqrt{\left(16-x\right)\left(9+x\right)}=12\)
Do hai vế không âm nên bình phương hai vế ta có
(16-x)(9+x) = 144
144 + 7x - \(x^2=144\)
\(x^2-7x=0\)
X = 0; 7
Gọi M là trung điểm AB
\(\Rightarrow M\left(\frac{5}{2};\frac{3}{2}\right)\)
Phương trình CM có dạng : \(y=ax+b\)
\(\Rightarrow\hept{\begin{cases}-2a+b=-3\\\frac{5}{2}a+b=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\Rightarrow y=x-1}\)
Gọi N là trung điểm BC \(\Rightarrow N\left(1;1\right)\)
Phương trình AN có dạng : \(x=1\)
\(\Rightarrow\) Tọa độ trọng tâm G là nghiệm của hệ
\(\hept{\begin{cases}y=x-1\\x=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}\Rightarrow}G=\left(1;0\right)}\)
Xet \(a^3=2-\sqrt{3}+2+\sqrt{3}+3\sqrt[3]{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}.a\)
= \(4+3a\)
=> \(a^3-3a-4=0\)
=> a la nghiem cua pt \(a^3-3a-4=0\)
mik nghi the , neu sai mong cac bn thong cam
pt <=> \(4x^2+4x+24=4y^2\)
<=> \(\left(2x+1\right)^2-4y^2=-23\)
<=> \(\left(2x+1-2y\right)\left(2x+1+2y\right)=-23\)
TH1: \(\hept{\begin{cases}2x+1-2y=-23\\2x+1+2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=-11\\2y=12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=6\end{cases}}\)
TH2: \(\hept{\begin{cases}2x+1-2y=-1\\2x+1+2y=23\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=11\\2y=12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=5\\y=6\end{cases}}\)
TH3: \(\hept{\begin{cases}2x+1-2y=1\\2x+1+2y=-23\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=-11\\2y=-12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-6\end{cases}}\)
TH1: \(\hept{\begin{cases}2x+1-2y=23\\2x+1+2y=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x+1=11\\2y=-12\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=5\\y=-6\end{cases}}\)