K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2020

Bạn xem lời giải ở đây

Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath

11 tháng 7 2020

ĐKXĐ: \(x\ne\frac{1}{2};x\ne-\frac{2}{3}\)

\(\frac{3}{2x-1}=\frac{5}{3x+2}\)

\(\Rightarrow3\left(3x+2\right)=5\left(2x-1\right)\)

\(\Leftrightarrow9x+6=10x-5\)

\(\Leftrightarrow-x=-11\)

\(\Leftrightarrow x=11\left(TM\right)\)

Vậy x = 11

11 tháng 7 2020

\(\frac{3}{2x-1}=\frac{5}{3x+2}\left(đkxđ:x\ne\frac{1}{2};x\ne-\frac{2}{3}\right)\)

\(\Leftrightarrow\frac{3\left(3x+2\right)}{\left(2x-1\right)\left(3x+2\right)}=\frac{5\left(2x-1\right)}{\left(2x-1\right)\left(3x+2\right)}\)

\(\Leftrightarrow3\left(3x+2\right)=5\left(2x-1\right)\)

\(\Leftrightarrow9x+6=10x-5\)

\(\Leftrightarrow9x-10x=-5-6\)

\(\Leftrightarrow-x=-11\)

\(\Leftrightarrow x=11\)

11 tháng 7 2020

để mọi căn thức trên có nghĩa thì

\(\sqrt{x^2+1}\ge0< =>x^2+1>0\left(đúng\right)\)

\(\sqrt{x^2+2}\ge0< =>x^2+2>0\left(đúng\right)\)

\(\sqrt{x^2+3}\ge0< =>x^2+3>0\left(đúng\right)\)

\(\sqrt{x^2+30}\ge0< =>x^2+30>0\left(đúng\right)\)

Vậy để căn thức trên có nghĩa với mọi x

\(\sqrt{x^2+40}\ge0< =>x^2+40>0\left(đúng\right)\)

11 tháng 7 2020

Bài làm:

+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)

Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)

+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)

\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)

Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)

+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)

\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

Học tốt!!!!

11 tháng 7 2020

cuc cuc ai bi con cac

18 tháng 7 2020

sorry em lp 6 nen ko hieu

10 tháng 7 2020

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

CM BĐT là đúng: ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

<=> \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{b}{c}+\frac{c}{b}-2\right)+\left(\frac{a}{c}+\frac{c}{a}-2\right)\ge0\)

<=> \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(b-c\right)^2}{bc}+\frac{\left(a-c\right)^2}{ac}\ge0\) (luôn đúng với mọi x,y,z > 0)

Khi đó: A = \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{9}{\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2}\)

<=> A \(\ge\frac{9}{x^2+2x+1+y^2+2y+1+z^2+2z+1}=\frac{9}{x^2+y^2+z^2+2\left(x+y+z\right)+3}\)

Áp dụng bdt cosi cho bộ ba số dương x2, y2 và z2 ; x, y và z (vì x,y,z > 0)

Ta có: \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}=3\sqrt[3]{\left(xyz\right)^2}=3\) (vì xyz = 1)

\(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> \(2\left(x+y+z\right)\ge6\)

=> \(x^2+y^2+z^2+2\left(x+y+z\right)+3\ge3+6+3=12\)

hay A \(\ge\)12

Dấu "=" xảy ra <=> x = y = z = 1

Vậy MinA = 12 khi x = y = z = 1

21 tháng 7 2020

Xin lỗi cô k nhầm!

Bài của em dòng thứ 10 bắt đầu áp dụng cô si là sai rồi. Bị ngược dấu và đáp án cũng không đúng.