K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2023

\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)

Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=0\)

Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)

 

18 tháng 6 2023

\(a,\sqrt{\dfrac{a}{2}}\) có nghĩa \(\Leftrightarrow\dfrac{a}{2}\ge0\Leftrightarrow a\ge0\)

\(b,\sqrt{-4a}\) có nghĩa \(\Leftrightarrow-4a\ge0\Leftrightarrow a\le0\)

\(c,\sqrt{3a+2}\) có nghĩa \(\Leftrightarrow3a+2\ge0\Leftrightarrow3a\ge-2\Leftrightarrow a\ge-\dfrac{2}{3}\)

\(d,\sqrt{5-a}\) có nghĩa \(\Leftrightarrow5-a\ge0\Leftrightarrow-a\ge-5\Leftrightarrow a\le5\)

19 tháng 6 2023

               loading...

a, Xét tam giác vuông EBC vuông tại E và  CI = IB

 ⇒ IE = IC = IB (1) ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Xét tam giác vuông BCF vuông tại F và IC =IB 

 ⇒IF = IC = IB (2) (vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền) 

Từ (1) và (2) ta có: 

IE = IF = IB = IC 

Vậy bốn điểm B, C, E, F cùng thuộc một đường tròn tâm I bán kính bằng \(\dfrac{1}{2}\) BC (đpcm)

b, Xét \(\Delta\)AFC và \(\Delta\)AEB có:

\(\widehat{CAF}\)  chung ; \(\widehat{AFC}\) = \(\widehat{AEB}\) = 900 

⇒ \(\Delta\)AFC  \(\sim\) \(\Delta\)AEB   (g-g)

⇒ \(\dfrac{AF}{AE}\) = \(\dfrac{AC}{AB}\) (theo định nghĩa hai tam giác đồng dạng)

⇒AB.AF = AC.AE (đpcm)

Xét tam giác vuông AEH vuông tại E và KA = KH 

⇒ KE = KH ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

\(\Delta\)EKH cân tại K ⇒ \(\widehat{KEH}\) = \(\widehat{EHK}\) 

\(\widehat{EHK}\) = \(\widehat{DHB}\) (vì hai góc đối đỉnh)

 ⇒ \(\widehat{KEH}\) = \(\widehat{DHB}\) ( tc bắc cầu) (3)

Theo (1) ta có: IE = IB ⇒ \(\Delta\) IEB cân tại I 

⇒ \(\widehat{IEB}\) = \(\widehat{IBE}\)  (4)

Cộng vế với vế của (3) và(4)

Ta có: \(\widehat{KEI}\) = \(\widehat{KEH}\) + \(\widehat{IEB}\) =  \(\widehat{DHB}\) + \(\widehat{IBE}\)  = \(\widehat{DHB}\) + \(\widehat{DBH}\)

        Vì tam giác DHB vuông tại D nên \(\widehat{DHB}\) + \(\widehat{DBH}\)  = 1800 - 900 = 900

 ⇒\(\widehat{KEI}\)  = 900

         IE \(\perp\) KE (đpcm)

 

 

 

 

 

 

 

17 tháng 6 2023

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) 

\(\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(\sqrt{6}+\sqrt{8}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)

\(\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{3}+2+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\times\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

= 1 + \(\sqrt{2}\) 

17 tháng 6 2023

\(\dfrac{3\sqrt{10}+\sqrt{20}-3\sqrt{6}-\sqrt{12}}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{3\sqrt{2}.\sqrt{5}+2\sqrt{5}-3\sqrt{2}.\sqrt{3}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{\sqrt{5}\left(3\sqrt{2}+2\right)-\sqrt{3}\left(3\sqrt{2}+2\right)}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)\left(3\sqrt{2}+2\right)}{\sqrt{5}+\sqrt{3}}\)

Bạn coi lại xem dưới mẫu đúng dấu ''+'' không á, phải dấu ''-'' mới rút với tử ở trên được nha.

17 tháng 6 2023

\(P=A.B=\dfrac{\sqrt{x}}{\sqrt{x}+1}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Ta có : \(\left|P\right|-P=0\) \(\Leftrightarrow\left|P\right|=P\Leftrightarrow\left|\dfrac{\sqrt{x}}{\sqrt{x}-2}\right|=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(+TH_1:x\ge0\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\) (luôn đúng)

\(+TH_2:x< 0\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}=0\)

\(\Leftrightarrow-2.\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)=0\)

\(\Leftrightarrow x=0\)

17 tháng 6 2023

Để tính diện tích bề mặt của quả bóng, ta sử dụng công thức diện tích bề mặt của hình cầu:

Diện tích bề mặt của hình cầu = 4πr^2

Trong đó, r là bán kính của quả bóng. Với đường kính của quả bóng bằng 22 cm, ta có bán kính r = 22 cm / 2 = 11 cm.

Thay giá trị của r vào công thức, ta có:

Diện tích bề mặt của quả bóng = 4π(11 cm)^2

Diện tích bề mặt của quả bóng = 4π(121 cm^2)

Diện tích bề mặt của quả bóng ≈ 1520.53 cm^2

Vậy diện tích bề mặt của quả bóng là khoảng 1520.53 cm^2.

17 tháng 6 2023

câu này là trong đề thi tỉnh Kiên Giang mới thi hôm qua, tui làm ra 484π nhưng khi coi đáp án thì lại là 121π nên tui mới nhờ mn xem dùm

23 tháng 6 2023

x=y=z=2

17 tháng 6 2023

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

\(\widehat{BAC}=\widehat{BHA}=90^o\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\) (1)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{AB}\) hay \(\dfrac{AB}{4+9}=\dfrac{4}{AB}\Rightarrow AB^2=52\Rightarrow AB=\sqrt{52}=2\sqrt{13}cm\)

Xét \(\Delta\text{A}BC\) và \(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}=90^o\)

\(\widehat{C}\) chung

\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g.g\right)\) (2)

Từ (1) và (2) \(\Rightarrow\Delta HAB\sim\Delta HCA\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}\) hay \(\dfrac{AH}{9}=\dfrac{4}{AH}\Rightarrow AH^2=36\Rightarrow AH=\sqrt{36}=6\left(cm\right)\)

Ta có \(\Delta ABC\) vuông tại A.

Áp dụng đinh lý Py-ta-go ta có:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{\left(4+9\right)^2-\left(2\sqrt{13}\right)^2}=3\sqrt{13}cm\)

b) Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot\left(4+9\right)\cdot6=39\left(cm^2\right)\)

17 tháng 6 2023