cho tam giác ABC. vẽ ra ngoài tam giác ABC các tam giác vuông cân ABD, BCE, CAF có các canh huyền lần lượt là AB, BC,CA. cmr các đường thẳng CD, BF, AE đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s: Đề sai phải sửa thành chứng minh BF = CG
Bài làm:
Ta có: Vì AD // FM
=> \(\frac{AB}{BF}=\frac{BD}{BM}\left(1\right)\)
Vì GM // AD
=> \(\frac{CG}{AC}=\frac{CM}{DC}\left(2\right)\)
Nhân vế (1) và (2) với nhau ta được:
\(\frac{AB}{BF}.\frac{CG}{AC}=\frac{BD}{BM}.\frac{CM}{DC}\left(3\right)\)
Mà M là trung điểm của BC => BM = CM (4)
Lại có AD là phân giác của tam giác ABC và D thuộc BC
=> \(\frac{BD}{DC}=\frac{AB}{AC}\left(5\right)\)
Kết hợp (3) với (4) và (5) ta được:
\(\frac{AB}{AC}.\frac{CG}{BF}=\frac{BD}{DC}.\frac{CM}{BM}\Leftrightarrow\frac{AB}{AC}.\frac{CG}{BF}=\frac{AB}{AC}\Leftrightarrow\frac{CG}{BF}=1\)
\(\Rightarrow CG=BF\)
ĐKXĐ: x \(\ne\)\(\pm\)3; x \(\ne\)-7
a) Ta có: P = \(\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\)
P = \(\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\frac{2x+10-x-3}{x+3}\right)\)
P = \(\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}:\frac{x+7}{x+3}\)
P = \(\frac{-2x-14}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
P = \(\frac{-2\left(x+7\right)}{x-3}\cdot\frac{1}{x+7}=-\frac{2}{x-3}\)
b) Với x \(\ne\)\(\pm\)3 và x \(\ne\)-7
Ta có: x - 1 = 2 <=> x = 3 (ktm)
=> ko tồn tại giá trị P khi x - 1 = 2
c) Với x \(\ne\)\(\pm\)3; và x \(\ne\)-7
Ta có: P = \(\frac{x+5}{6}\)
<=> \(-\frac{2}{x-3}=\frac{x+5}{6}\)
=> (x - 3)(x + 5) = -12
<=> x2 + 2x - 15 = -12
<=> x2 + 2x - 3 = 0
<=> x2 + 3x - x - 3 = 0
<=> (x - 1)(x + 3) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
Vậy ...
a) \(P=\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\left(x\ne\pm3\right)\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x}{x+3}-\frac{5}{x-3}\right):\frac{2x+10-x-3}{x+3}\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x+15}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+7}{x+3}\)
\(=\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
\(=\frac{\left(-2x-14\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}\)
\(=\frac{-2\left(x+7\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}=-\frac{2}{x-3}\)
vậy \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
b) ta có \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
có x-1=2
<=> x=3 (không thỏa mãn điều kiện)
vậy không có giá trị P để x-1=2
c) ta có: \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
P=\(\frac{x+5}{6}\)=> \(\frac{-2}{x-3}=\frac{x+5}{6}\)
\(\Leftrightarrow x^2+2x-15=-12\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
đối chiếu điều kiện ta thấy x=1 thỏa mãn điều kiện
vậy \(P=\frac{x+5}{6}\)đạt được khi x=1
Bài làm:
a) Ta có: N,E lần lượt là trung điểm của DC,MC
=> NE là đường trung bình của tam giác MCD
=> NE // DM // FM và \(NE=\frac{1}{2}DM=FM\)
=> Tứ giác MENF là hình bình hành (dấu hiệu nhận biết 2 cạnh // và bằng nhau)
b) CM ý hệt phần a không khác tí nào:
Vì M,G lần lượt là trung điểm của AB,AN
=> MG là đường trung bình của tam giác ABN
=> MG // BN // HN và \(MG=\frac{1}{2}BN=HN\)
=> Tứ giác MHNG là hình bình hành
c) Theo phần a và b, các tứ giác MENF và MHNG là các hình bình hành
=> MN cắt GH và FE tại trung điểm mỗi đường (tính chất đường chéo của hình bình hành)
=> EF,GH,MN đồng quy
a) xét tam giác MBC có \(\widehat{MBC}=\widehat{MCB}\)=> tam giác MBC cân tại M, HE _|_BC
=> E là trung điểm của BC
tam giác EMC có EO là phân giác \(\widehat{MEC}\)
=> \(\frac{MD}{CD}=\frac{ME}{EC}=\frac{3}{4}\)
\(ME=\frac{3}{4}CE\)
\(ME^2+CE^2=MC^2\Rightarrow\frac{9}{16}CE^2+CE^2=15^2\)
\(\Rightarrow\frac{25}{16}CE^2=15^2\Rightarrow CE=12\Rightarrow HE=9\)
b) tam giác ABM và tam giác ACB có
\(\widehat{BAC}=90^o\)là góc chung
\(\widehat{ABM}=\widehat{ACB}\left(gt\right)\)
=> tam giác ABM ~ tam giác ACB (g.g)
=> \(\frac{AB}{AC}=\frac{AM}{AB}\Rightarrow AB^2=AC\cdot AM\)
Ta có:
\(x^4+y^4=x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)
<=> \(x^4+y^4=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^4+y^4\right)\)
<=> \(\left(x^4+y^4\right)\left(x+y-xy-1\right)=0\)
<=> \(x+y-xy-1=0\) vì x; y dương
<=> \(\left(x-1\right)-y\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(1-y\right)=0\)
<=> x = 1 hoặc y = 1
Với x = 1 ta có: \(y^3=y^4=y^5\Leftrightarrow y=1\)
Với y = 1 ta có: x = 1
Vậy x^6 + y^6 = 1^6 + 1^6 = 2
Chứng minh:
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) (1) với a; b \(\ge\)1
Thật vậy:
(1) <=> \(\frac{2+a^2+b^2}{1+a^2+b^2+a^2b^2}\ge\frac{2}{1+ab}\)
<=> \(2+a^2+b^2+2ab+a^3b+ab^3\ge2+2a^2+2b^2+2a^2b^2\)
<=> \(a^3b+ab^3+2ab-a^2-b^2-2a^2b^2\ge0\)
<=> \(ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
<=> \(\left(ab-1\right)\left(a-b\right)^2\ge0\)đúng với a; b \(\ge\)1
Vậy (1) đúng
Áp dụng ta có:
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+abc}\ge\frac{2}{1+ab}+\frac{2}{1+c\sqrt{abc}}\)
\(=2\left(\frac{1}{1+\left(\sqrt{ab}\right)^2}+\frac{1}{1+\left(\sqrt{c\sqrt{abc}}\right)^2}\right)\ge2.\frac{2}{1+\sqrt{ab}.\sqrt{c\sqrt{abc}}}=\frac{4}{1+\sqrt{abc\sqrt{abc}}}\)
\(\ge\frac{4}{1+\sqrt{abc.abc}}=\frac{4}{1+abc}\)
=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\)
Dấu "=" xảy ra <=> a = b = c
a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\left(x\ne\pm2\right)\)
\(=\left(\frac{x}{x-2}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x+2}{x+1}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{x+1}=\frac{\left(x+1\right)^2\cdot\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\frac{x+1}{x-2}\)
vậy \(P=\frac{x+1}{x-2}\left(x\ne\pm2\right)\)
b) ta có \(P=\frac{x+1}{x-2}\left(x\ne\pm2\right)\)
ta có x=\(\frac{1}{2}\left(tm\right)\)thay vào P ta được \(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{3}{2}:\left(\frac{-3}{2}\right)=\frac{3}{2}\cdot\frac{-2}{3}=-1\)
vậy P=-1 khi x=1/2
\(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)
a) ĐKXĐ : \(x\ne\pm2\)
\(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x}{x-2}+\frac{1}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{1}{\left(x+2\right)\left(x-2\right)}\right)\cdot\frac{x+2}{x+1}\)
\(P=\frac{x^2+2x+1}{\left(x+2\right)\left(x-2\right)}\cdot\frac{x+2}{x+1}\)
\(P=\frac{\left(x+1\right)^2\cdot\left(x+2\right)}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}\)
\(P=\frac{x+1}{x-2}\)
b) Thế x = 1/2 vào P ta được :
\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{\frac{3}{2}}{-\frac{3}{2}}=-1\)