Cho a,b,c khác 0 thỏa mãn a+b+c=0. Tính
\(A=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
https://h.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+abc+c%C3%B3+ab=6cm,ac=8cm,bc=10cm++a)+ch%E1%BB%A9ng+minh+tam+gi%C3%A1c+abc+vu%C3%B4ng+t%E1%BA%A1i+a++b)+t%C3%ADnh+g%C3%B3c+b+,c+v%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+cao+ah+c%E1%BB%A7a+tam+gi%C3%A1c+abc++c)+t%C3%ADnh+b%C3%A1n+k%C3%ADnh+r+c%E1%BB%A7a+%C4%91%C6%B0%C6%A1ng+tr%C3%B2n+o+n%E1%BB%99i+ti%E1%BA%BFp+tam+gi%C3%A1c+abc&id=687912
Áp dụng BĐT Bunhiacopxki:
\(x+\sqrt{2-x^2}\le\sqrt{\left(1^2+1^2\right)\left[x^2+\left(2-x^2\right)\right]}\le\sqrt{2.2}=2\)
(Dấu "="\(\Leftrightarrow x=1\))
và \(4y^2+4y+3=\left(2y+1\right)^2+2\ge2\)
(Dấu "="\(\Leftrightarrow y=\frac{-1}{2}\))
\(\Rightarrow x+\sqrt{2-x^2}=4y^2+4y+3\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}\)
Có cách khác nè:
P=x4(x−1)3+y4(y−1)3≥2√x4y4(x−1)3(y−1)3x4(x−1)3+y4(y−1)3≥2x4y4(x−1)3(y−1)3
⇒P≥2x2y2√(x−1)3(y−1)3=2.x2x−1.y2y−1.1√(x−1)(y−1)⇒P≥2x2y2(x−1)3(y−1)3=2.x2x−1.y2y−1.1(x−1)(y−1)
Ta dễ dàng chứng minh được a2a−1≥4a2a−1≥4
⇒P≥2.4.4.1√(x−1)(y−1)≥32.1x−1+y−12≥32⇒P≥2.4.4.1(x−1)(y−1)≥32.1x−1+y−12≥32
Dấu "=" khi x=y=2
x4(x−1)3+16(x−1)≥8.x2(x−1)x4(x−1)3+16(x−1)≥8.x2(x−1)
Tương tự và cộng hai BĐT lại :
p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)
Ta xét A=x2x−1+y2y−1A=x2x−1+y2y−1
Đặt x - 1 = a và y - 1 = b, ta có A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥2√4+4=8⇒A≥8A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥24+4=8⇒A≥8
Do đó P≥8A−16(x+y)+32≥8.8−16.4+32=32P≥8A−16(x+y)+32≥8.8−16.4+32=32
Min P = 32 <=> x = y = 2
Ta có: a + b + c = 2 nên \(2c+ab=c\left(a+b+c\right)+ab=ac+bc+c^2+ab\)
\(=\left(ca+c^2\right)+\left(bc+ab\right)=c\left(a+c\right)+b\left(a+c\right)\)\(=\left(b+c\right)\left(a+c\right)\)
Áp dụng BĐT Cô - si cho 2 số không âm:
\(\frac{1}{b+c}+\frac{1}{a+c}\ge2\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\)(Vì a,b,c thực dương)
\(\Rightarrow\sqrt{\frac{1}{\left(b+c\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2c+ab}}\le\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{a+c}\right)\)(cmt)
\(\Rightarrow\frac{ab}{\sqrt{ab+2c}}\le\frac{1}{2}\left(\frac{ab}{b+c}+\frac{ab}{a+c}\right)\)(nhân 2 vế cho ab thực dương) (1)
(Dấu "="\(\Leftrightarrow\frac{1}{b+c}=\frac{1}{c+a}\Leftrightarrow b+c=c+a\Leftrightarrow a=b\))
Tương tự ta có: \(\frac{bc}{\sqrt{bc+2a}}\le\frac{1}{2}\left(\frac{bc}{b+a}+\frac{bc}{a+c}\right)\)(Dấu "="\(\Leftrightarrow b=c\)) (2)
\(\frac{ca}{\sqrt{ca+2b}}\le\frac{1}{2}\left(\frac{ca}{c+b}+\frac{ca}{b+a}\right)\)(Dấu "="\(\Leftrightarrow a=c\)) (3)
Cộng các BĐT (1) , (2) , (3), ta được:
\(P\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{b+a}+\frac{cb}{c+a}+\frac{ac}{b+a}+\frac{ac}{c+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{b\left(c+a\right)}{c+a}+\frac{a\left(c+b\right)}{c+b}+\frac{c\left(b+a\right)}{b+a}\right)\)
\(\le\frac{1}{2}\left(a+b+c\right)=1\)
Vậy \(P=\frac{ab}{\sqrt{ab+2c}}\)\(+\frac{bc}{\sqrt{bc+2a}}\)\(+\frac{ca}{\sqrt{ca+2b}}\le1\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{2}{3}\))
Ta có:
\(\frac{ab}{\sqrt{ab+2c}}=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{ab}{c+a}+\frac{ab}{c+b}\)
Tương tự:
\(\frac{bc}{\sqrt{bc+2a}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)
\(\frac{ca}{\sqrt{ca+2b}}\le\frac{ca}{b+c}+\frac{ca}{b+a}\)
Khi đó:
\(P\le\frac{ab}{a+c}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+c}+\frac{ca}{b+a}\)
\(=\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}+\frac{c\left(a+b\right)}{b+a}\)
\(=a+b+c=2\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2}{3}\)
\(\frac{4ab}{1+ab}\le\frac{4ab}{2\sqrt{ab}}=2\sqrt{ab}\le a+b\)
Dấu "=" xảy ra khi a=b=1
b: Tọa độ M là:
x=0 và y=1-3/2*0=1
Vì (d) đi qua M(0;1) và N(2;3) nên ta có hệ:
0a+b=1 và 2a+b=3
=>b=1; a=1
Ta có \(a+b+c=0\)
=> \(a=-b-c\)
=> \(a^2=\left(b+c\right)^2\)
=> \(a^2-b^2-c^2=\left(b+c\right)^2-b^2-c^2\)
\(=b^2+2bc+c^2-b^2-c^2\) \(=2bc\)
Tương tự : \(b^2-c^2-a^2=2ac\)
\(c^2-a^2-b^2=2ab\)
Thay vào A, ta có:
\(A=\frac{a^2}{2ab}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2ab}\)
Ta chứng minh được \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-ab-bc\right)\)
mà \(a+b+c=0\) => \(a^3+b^3+c^3-3abc=0\) => \(a^3+b^3+c^3=3abc\)
Lại thay vào A:
\(A=\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy \(A=\frac{3}{2}\)
Cách chứng minh \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
Ta có \(a^3+b^3+c^3-3abc=\left(a^3+b^3\right)+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
= \(\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)-3abc\right]\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)