Tìm x,biết:
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là \(x+y=a+b\) hả ?
Vì \(x+y=a+b\Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\)
\(\Rightarrow x^2+2xy+y^2=a^2+2ab+b^2\)
Mà \(x^2+y^2=a^2+b^2\Rightarrow2xy=2ab\Rightarrow xy=ab\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Rightarrow x^3+y^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\Rightarrow x^3+y^3=a^3+b^3\left(đpcm\right)\)
Bài làm:
Ta có: \(x+y=a+b\Leftrightarrow x-a=b-y\left(1\right)\)
Thay (1) vào ta có: \(x^2+y^2=a^2+b^2\Leftrightarrow x^2-a^2=b^2-y^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)
\(\Rightarrow x+a=b+y\left(2\right)\)
Cộng vế (1) và (2) lại: \(2x=2b\Rightarrow x=b\)
\(\Rightarrow y=a\)
\(\Rightarrow\hept{\begin{cases}x^3=b^3\\y^3=a^3\end{cases}}\)
\(\Rightarrow x^3+y^3=a^3+b^3\)
Nếu \(x-a=b-y=0\Rightarrow\hept{\begin{cases}x=a\\b=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3=a^3\\b^3=y^3\end{cases}}\)
\(\Rightarrow x^3+y^3=a^3+b^3\)
=> đpcm
\(a,b,c>0;ab+ac+bc=abc\)
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z>0\)=> x + y + z = 1
Ta có:\(P=\frac{1}{bc\left(1+\frac{1}{a}\right)}+\frac{1}{ac\left(1+\frac{1}{b}\right)}+\frac{1}{ab\left(1+\frac{1}{c}\right)}\)
Viết lại \(P=\frac{yz}{1+x}+\frac{xz}{1+y}+\frac{xy}{1+z}\)
\(=\frac{yz}{\left(x+z\right)+\left(x+y\right)}+\frac{xz}{\left(x+y\right)+\left(z+y\right)}+\frac{xy}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\frac{1}{4}\left(\frac{yz}{x+z}+\frac{yz}{x+y}\right)+\frac{1}{4}\left(\frac{xz}{x+y}+\frac{xz}{y+z}\right)+\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)
\(\le\frac{1}{4}\left(\frac{yz+xy}{x+z}+\frac{yz+xz}{x+y}+\frac{xz+xy}{y+z}\right)=\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/3 <=> a= b = c = 3
max P = 1/4 tại a = b = c = 3
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}....\frac{n\left(n+2\right)+1}{n\left(n+2\right)}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+1}{1.3}.\frac{\left(3-1\right)\left(3+1\right)+1}{2.4}.\frac{\left(4-1\right)\left(4+1\right)+1}{3.5}....\frac{\left(n+1-1\right).\left(n+1+1\right)+1}{n.\left(n+2\right)}\)
\(=\frac{2^2-1^2+1}{1.3}.\frac{3^2-1^2+1}{2.4}.\frac{4^2-1^2+1}{3.5}....\frac{\left(n+1\right)^2-1^2+1}{n\left(n+2\right)}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.2.3.3.4.4....\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5....n.\left(n+2\right)}=\frac{\left[2.3.4....\left(n+1\right)\right]\left[\left(2.3.4...\left(n+1\right)\right)\right]}{\left(1.2.3...n\right).\left[3.4.5...\left(n+2\right)\right]}\)
\(=\frac{\left(n+1\right).2}{n+2}< \frac{2.\left(n+2\right)}{n+2}=2\)
=> A < 2
câu này là câu b và c nhé nếu là câu a thì cái bt = cái khác
Gỉa sử : ( bt = biểu thức :D )
\(bt=\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(bc+ad\right)x+bd\)
Ta có : \(\hept{\begin{cases}a+c=-6\\d+ac+b=14\\bc+ad=-7and:bd=1\end{cases}}\)(do không có ngoặc 4
Đến đây thì giải ra như hpt thôi
Dạng này được cái không cần sáng tạo già cả chỉ cần theo công thức nhưng khá khó trong việc giải hệ
a) Giả sử
\(4x^4+4x^3+5x^2+2x+1=4\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển vế trái = \(4x^4+4\left(a+c\right)x^3+4\left(b+d+ac\right)x^2+4\left(ad+bc\right)x+4bd\)
Rồi sử dụng đồng nhất thức, ta có hpt gồm các pt
\(4\left(a+c\right)=4\),\(4b+4d+4ac=5\),\(4ad+4bc=2\),\(4bd=1\)
Rồi ...
Các câu còn lại tương tự:))
1/3^2+1/5^2+1/7^2+...+1/(2n+1)^2 < 1/1.3+1/3.5+1/5.7+...+1/(2n-1)(2n+1)
= 1/2(1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)
= 1/2(1-1/(2n+1))
= 1/2 . 2n/(2n+1)
= 2n/2(2n+1)
( 2x - 1 )2 + ( x + 3 )2 - 5( x + 7 )( x - 7 ) = 0
<=> ( 2x - 1 )2 + ( x + 3 )2 - 5( x2 - 72 ) = 0
<=> 4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0
<=> 2x + 255 = 0
<=> 2x = -255
<=> x = -255/2
\(pt< =>4x^2-4x+1+x^2+6x+9-5x^2+5.49=0\)
\(< =>2x+255=0< =>x=-\frac{255}{2}\)