Cho 2 số dương a,b thỏa mãn a2 + b2 = 2
Tính GTNN: \(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt h(x) = x4 + a.x3 + b.x2 + c.x + d
h(1) = 1 => 1 + a + b + c + d = 2
Tương tự với h(2), h(4),... ta được 4 phương trình bậc một 4 ẩn, dễ dàng giải ra kết quả.
xét g(x)=x2+1 có g(1)=2; g(2)=5; g(4)=17; g(-3)=10
ta có f(x)=h(x)-g(x)thì f(x) bậc 4 của hệ số x4 là 1 và f(1)=f(2)=f(4)=f(-3)
=> f(x)=(x-1)(x-2)(x-4)(x+3)
=> f(x)=(x2-3x+2)(x2-x-12)=x4-4x3-7x2+34x-24
=> h(x)=x4-4x3-6x2+34x-25
em đoán là B
vì vận tốc của linh nhanh gấp đôi vận tốc của khánh=> khi khánh chạy đc 1/4 quãng đường thì linh đã chạy đc 1 nửa quãng đường
và khi khánh đi đc nửa đoạn đường thì linh đã về đích
đây chỉ là suy ghĩ của 1 hs lớp 6 mong mọi ng thông cảm cho :))
a) PTKKOH=39+16+1=56 => 168g KOH = 168:56=3 (mol KOH)
=> mH=3.1=3 (g)
b c d = tương tự
Bài làm :
Đổi 150cm2=0,015 m2
Áp suất do nước gây ra tại chỗ thủng là:
\(p=d.h=10000.2,8=28000\left(Pa\right)\)
Vậy lực tối thiểu để giữ miếng vá là :
\(F=p.s=28000.0,015=420\left(N\right)\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Đáp án : F > 420N giải thích các bước giải : lực tối thiểu này phải thắng được lực áp suất của nước .
Do đó F > áp suất . Diện tích : 2,8. 10000.150.10-4 = 420N .
Ta có: (a - b)2 + (b - c)2 + (a - c)2 = a2 + b2 + c2
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + a2 - 2ac + c2 = a2 + b2 + c2
<=> a2 + b2 + c2 = 2(ab + bc + ac)
<=> ab + bc + ac = \(\frac{a^2+b^2+c^2}{2}\) (1)
Ta lại có: a + b + c = 6
<=> (a + b + c)2 = 36
<=> a2 + b2 + c2 + 2(ab + bc + ac) = 36
<=> a2 + b2 + c2 + a2 + b2 + c2 = 36 (vì a2 + b2 + c2 = 2(ab + bc + ac)
<=> 2(a2 + b2 + c2) = 36 <=> a2 + b2 + c2 = 18
<=> \(\frac{a^2+b^2+c^2}{2}=9\)(2)
Từ (1) và (2) => ab + ac + bc = 9
Chứng minh \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) với \(p,q>0\)(*) (dễ chứng minh bằng biến đổi tương đương).
Áp dụng BĐT (*) vào bài toán, ta có:
\(M=\frac{a^3}{2016a+2017b}+\frac{b^3}{2017a+2016b}\)
\(=\frac{a^4}{2016a^2+2017ab}+\frac{b^4}{2017ab+2016b^2}\)
\(=\frac{\left(a^2\right)^2}{2016a^2+2017ab}+\frac{\left(b^2\right)^2}{2017ab+2016b^2}\)
\(\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\)(1)
Mà \(ab\le\frac{a^2+b^2}{2}\)nên \(\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034ab}\ge\frac{\left(a^2+b^2\right)^2}{2016\left(a^2+b^2\right)+4034.\frac{a^2+b^2}{2}}=\frac{2^2}{2016.2+4034.\frac{2}{2}}=\frac{2}{4033}\)(2)
Từ (1) và (2) ta có \(M\ge\frac{2}{4033}.\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=1.\)
Vậy \(M_{min}=\frac{2}{4033}\)khi \(a=b=1.\)
M=\(\left[\frac{a^3}{2016a+2017b}+\frac{a\left(2016a+2017b\right)}{4033^2}\right]+\left[\frac{b^3}{2017a+2016b}+\frac{b\left(2017a+2016b\right)}{4033^2}\right]-\frac{2016\left(a^2+b^2\right)+4034ab}{4033^2}\)
\(\ge\frac{2a^2}{4033}+\frac{2b^2}{4033}-\frac{2016\left(a^2+b^2\right)+4034\frac{a^2+b^2}{2}}{4033^2}=\frac{a^2+b^2}{4033}=\frac{2}{4033}\)
dấu "=" xảy ra khi và chỉ khi a=b=1