K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

\(\hept{\begin{cases}\left|2x+5\right|=2x+5\Leftrightarrow x\ge-\frac{5}{2}\\\left|2x+5\right|=-\left(2x+5\right)\Leftrightarrow x< -\frac{5}{2}\end{cases}}\)

\(\hept{\begin{cases}\left|4-x\right|=4-x\Leftrightarrow x\le4\\\left|4-x\right|=x-4\Leftrightarrow x>4\end{cases}}\)

\(\hept{\begin{cases}\left|x+9\right|=x+9\Leftrightarrow x\ge-9\\\left|x+9\right|=-\left(x+9\right)\Leftrightarrow x< -9\end{cases}}\)

(+) \(-\frac{5}{2}\le x\le4\) \(\left(-\frac{5}{2}>-9\right)\)

\(pt\Leftrightarrow2x+5+4-x=x+9\)

\(\Leftrightarrow0x=0\left(true\right)\)

(+) \(-9\le x< -\frac{5}{2}\) \(\left(-\frac{5}{2}< 4\right)\)

\(pt\Leftrightarrow-\left(2x+5\right)+4-x=x+9\)

\(\Leftrightarrow-2x-5+4-x=x+9\)

\(\Leftrightarrow-4x=10\Leftrightarrow x=-\frac{5}{2}\)( không thỏa mãn )

Vậy phương trình nhận mọi x trong khoảng \(-\frac{5}{2}\le x\le4\)làm nghiệm

30 tháng 7 2020

Ta có |2x + 5| + |4 - x| = |x + 9|

=> \(\orbr{\begin{cases}\left|2x+5\right|+\left|4-x\right|=x+9\\\left|2x+5\right|+\left|4-x\right|=-x-9\end{cases}}\)

Khi |2x + 5| + |4 - x| = x + 9 (1)

Nếu x < -2,5

=> |2x + 5| = - (2x + 5) = -2x - 5

=> |4 - x| = 4 - x

=> (1) <=> -2x - 5 + 4 - x = x + 9

=> -2x - x - x = 9 - 4 + 5

=> - 4x = 10

=> x = -2,5 (loại)

Nếu \(-2,5\le x\le4\)

=> |2x + 5| = 2x + 5

|4 - x| = 4 - x

=> (1) <=> 2x + 5 + 4 - x = x + 9

=> 2x - x - x = 9 - 5 - 4

=> 0x = 0

=> x thỏa mãn với  \(-2,5\le x\le4\)

Nếu x > 4

=> |2x + 5| = 2x + 5

|4 - x| = -4 + x

=> (1) <=> 2x + 5 - 4 + x = x + 9

=> 2x + x - x = 9 - 5 + 4

=> 2x = 8

=> x = 4 (loại)

Vậy khi |2x + 5| + |4 - x| = x + 9 thì  \(-2,5\le x\le4\)

Khi |2x + 5| + |4 - x| = -x - 9

Nếu x < -2,5

=> |2x + 5| = - (2x + 5) = -2x - 5

=> |4 - x| = 4 - x

=> (1) <=> -2x - 5 + 4 - x = -x - 9

=> -2x - x + x = -9 - 4 + 5

=> - 2x = -8

=> x = 4 (loại)

Nếu \(-2,5\le x\le4\)

=> |2x + 5| = 2x + 5

|4 - x| = 4 - x

=> (1) <=> 2x + 5 + 4 - x = -x - 9

=> 2x - x + x = -9 - 5 - 4

=> 2x = -18

=> x = -9 (loại)

Nếu x > 4

=> |2x + 5| = 2x + 5

|4 - x| = -4 + x

=> (1) <=> 2x + 5 - 4 + x = - x - 9

=> 2x + x + x = 9 - 5 + 4

=> 4x = 8

=> x = 2 (loại)

Vậy khi |2x + 5| + |4 - x| = -x - 9 thì \(x\in\varnothing\)

Vậy  \(-2,5\le x\le4\)

30 tháng 7 2020

d, Gọi giao điểm của MG và BD là O.

Xét tam giác MOB vuông tại M có MBO = 45 độ

=> MOB v.cân tại M. => MO = MB ( t/c tam giác vuông cân )

Lại có Tam giác AND = Tam giác AMB 

=> ND = BM ( 2 cạnh tương ứng ) 

=> MO = ND

Ta có : IMO + NMC = 90 độ ( = GMC )

IND + NMC = 90 độ ( = GMC ) 

=> IMO = IND

Xét tam giác NDI và tam giác MOI có : 

MO = ND ( cmt ) ; IMO = IND ( cmt ) ; IN = IM ( gt )

=> tam giác NDI = tam giác MOI ( c.g.c )

=> NID = MIO ( 2 góc tương ứng )

Mà MIO + NIB = 180 độ

=> NID + NIB = 180 độ <=> DIB = 180 độ

<=> B,I,D thẳng hàng ( đpcm )

30 tháng 7 2020

ĐK: \(x\le-1\)hoặc \(x\ge2\)

\(\left(2x-1\right)^2=12\sqrt{x^2-x-2}+1\Leftrightarrow4x^2-4x-12\sqrt{x^2-x-2}=0\)

\(\Leftrightarrow x^2-x-2-3\sqrt{x^2-x-2}+2=0\)

Đặt \(t=\sqrt{x^2-x-2}\ge0\). Phương trình trên trở thành \(t^2-3t+2=0\)

Đến đây bạn tự giải tiếp

30 tháng 7 2020

điều kiện x2-x-2 >=0 <=> x=< -1; x>= 2

ta biến đổi phương trình về dạng (2x-1)2=\(12\sqrt{x^2-x+1}+1\Leftrightarrow4x^2-4x+1=12\sqrt{x^2-x+1}+1\Leftrightarrow x^2-x=3\sqrt{x^2-x-2}\)

đặt t=\(\sqrt{x^2-x-2}\ge0\)thì t2=x2-x-2 thay vào phương trình ta được

t2+2-3t=0 <=> t=1 và t=2

với t=1 ta được x2-x-3=0 => \(x=\frac{1\pm\sqrt{13}}{2}\)

với t=2 ta đươc x2-x-6=0 => x=-2; x=3

các nghiệm này đều thỏa mãn điều kiện

vậy \(x=\left\{-2;3;\frac{1\pm\sqrt{13}}{2}\right\}\)là các nghiệm của phương trình

30 tháng 7 2020

Trả lời:

Gọi thời gian đội I và đội II làm một mình xong công việc lần lượt là x; y (ngày)

Điều kiện : x, y > 12, x,y ∈ N.

Một ngày đội I làm được : Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 (công việc).

Một ngày đội II làm được : Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 (công việc).

+ Hai đội cùng làm sẽ xong trong 12 ngày nên ta có phương trình: Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Hai đội cùng làm trong 8 ngày được: Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 công việc.

⇒ còn lại đội II phải hoàn thành một mình Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 công việc.

Vì đội II tăng năng suất gấp đôi nên một ngày đội II làm được Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 công việc.

Đội II hoàn thành Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9 công việc còn lại trong 3,5 ngày nên ta có phương trình: Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có hệ phương trình:

Giải bài 45 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu làm một mình, đội I làm xong công việc trong 28 ngày, đội II làm xong công việc trong 21 ngày.

30 tháng 7 2020

Gọi x , y lần lượt là số thời gian đội 1 và đội 2 hoàn thành xong công việc 

Trong 1 ngày , đội 1 làm xong \(\frac{1}{x}\) công việc .

Trong 1 ngày , đội 2 làm được \(\frac{1}{y}\)công việc .

Trong 1 ngày , cả 2 đội làm được \(\frac{1}{12}\) công việc .

Theo bài cho ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)  ( 1 )

Khi cả 2 đội làm chung 8 ngày , cả hai đội làm được \(\frac{8}{12}=\frac{2}{3}\)công việc .

Vậy số công việc để 2 đội làm nốt là : \(1-\frac{2}{3}=\frac{1}{3}\) công việc

Mà đội 2 làm với năng suất tăng gấp đôi nên : \(2.\frac{1}{y}=\frac{2}{y}\) 

Ta lại có : \(3,5.\frac{2}{y}=\frac{1}{3}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : x = 28  , y = 21 

Vậy đội 1 làm trong 28 ngày , đội 2 làm trong 21 ngày .

Học tốt

30 tháng 7 2020

Ta có: 4x2 + 12xy + 10y2 + 4x + 4y + 2 = 0

<=> (4x2 + 12xy + 9y2) + 2(2x + 3y) + 1 + (y2 - 2y + 1) = 0

<=> (2x + 3y)2 + 2(2x + 3y) + 1 + (y - 1)2 = 0

<=> (2x + 3y + 1)2 + (y - 1)2 = 0

<=> \(\hept{\begin{cases}2x+3y+1=0\\y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-\frac{1+3y}{2}\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)(tm)

Khi đó: P = \(\frac{x^2+y^2+xy}{3xy}=\frac{\left(-2\right)^2+1^2-2.1}{3.\left(-2\right).1}=-\frac{1}{2}\)

30 tháng 7 2020

CÓ AI KẾT BẠN VS TUI KO???

30 tháng 7 2020

ko ai kết bạn vs tui à

30 tháng 7 2020

Đặt a2 = x; b2 = y; c2 = z

Khi đó, ta có: (x + y)(y + z)(z + x) \(\ge\)xyz

<=> (xy + xz + y2 + yz)(z + x) - 8xyz \(\ge\)0

<=> xyz + xz2 + y2z + yz2 + x2y + x2z + y2x + xyz - 8xyz \(\ge\)0

<=> (xz2 +xy2) + (y2z + zx2) + (yz2 + yx2) - 6xyz \(\ge\)0

<=> (xz2 - 2xyz + xy2) + (y2z + zx- 2xyz) + (yz+ yx2 - 2xyz) \(\ge\)0

<=> x(z2 - 2yz + y2) + z(y2 + x2 - 2xy) + y(z2 + x2 - 2xz) \(\ge\) 0

<=> x(z - y)2 + z(y - x)2 + y(z - x)2 \(\ge\)0

hay a2(c2 - b2)2 + c2(b2 - a2)2 + b2(c2 - a2)2 \(\ge\)0 (luôn đúng với mọi a;b;c)

=> Đpcm

30 tháng 7 2020

Đặt \(a^2;b^2;c^2\rightarrow x;y;z\left(x;y;z\ge0\right)\)

Khi đó bài toán trở thành \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(< =>\left(x+y\right)\left(y+z\right)\left(z+x\right)-8xyz\ge0\)

\(< =>a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)hay \(a^2=b^2=c^2\)

30 tháng 7 2020

Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)

\(=\frac{6}{\left(x+y\right)^2}=6\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

30 tháng 7 2020

Bài làm:

Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)

\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{1^2}+2=6\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

30 tháng 7 2020

để sai phải không ạ ? tìm Max chứ