từ A nằm ngoài đường tròn o kẻ 2 tiếp tuyến AB và AC (B Và C là 2 tiếp điểm ) Kẻ đường kính BD Và đường Thẳng vuông góc với BD tại O cắt CD tại I
a) Chứng minh AICO là hình thang cân
b)Chứng minh AI=const Khi A di chuyển
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
>< chj nghĩ e vào gg hơn
tại cop cái đó hơi dài
.............. hok tốt
m = b3+b3
= (a+b ) (a2+b2+ ab)
mà a+b bằng 1 nên
m=a2+b2 - ab
m= (a^2 + b^2 + 2ab ) - 3ab
3ab = _ < 3 (a+b ) 2/4
=> m _>- 3 (a+b ) 2/4
=1- 3/4 = 3/4
chả cần j cả lm bff của nhau thui :3
\(\sqrt{12}=\sqrt{x^2+12x+13}\)
\(\Leftrightarrow12=x^2+12x+13\)
\(\Leftrightarrow x^2+12x+36-35=0\)
\(\Leftrightarrow\left(x+6\right)^2-35=0\)
\(\Leftrightarrow\left(x+6+\sqrt{35}\right)\left(x+6-\sqrt{35}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-6-\sqrt{35}\\x=\sqrt{35}-6\end{cases}}\)
Lam thu :3
\(Tk+1=Ck_6.\left(2x\right)^{6-k}.\left(-\frac{1}{x^2}\right)\)
\(=Ck_6.2^{6-k}.x^{6-k}.\frac{\left(-1\right)^k}{x^{2k}}\)
\(-Ck_6.2^{6-k}.x^{6-k-2k}.\left(-1\right)^k\)
SH o chua x \(\Leftrightarrow x^{6-3k}=x^0\)
\(\Leftrightarrow6-3k=0\)
\(\Leftrightarrow k=2\)
\(\Rightarrow SH\)can tim la: \(C^{2_6}.2^4.x^0.\left(-1\right)^2\)
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
a) \(A=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-\sqrt{x}-3-x+2\sqrt{x}+8-2+3\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}-4}\)
b) Để \(A\in Z\)
\(\Leftrightarrow\frac{\sqrt{x}+3}{\sqrt{x}-4}=\frac{\sqrt{x}-4}{\sqrt{x}-4}+\frac{7}{\sqrt{x}-4}\in Z\)
=>\(\sqrt{x}-4\inƯ\left(7\right)\)
........
ĐK: \(x\ge1\)
pt <=> \(\sqrt{x-1}+\sqrt{4\left(x-1\right)}-2\sqrt{x-1}=3\)
<=> \(\sqrt{x-1}+2\sqrt{x-1}-2\sqrt{x-1}=3\)
<=> \(\sqrt{x-1}=3\)
<=> x - 1 = 9
<=> x = 10 ( thỏa mãn)
Kết luận: Vậy x = 10.
Đề sai nhé bạn :
Chẳng hạn : \(0+1+2=3\)
Nhưng \(0^2+1^2+2^2=5>3\)nhé