K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A, x(x+y)-(2x+2y)

A=x(x+y)-2(x+y)

A=(x+y)(x-2)

B, 5x(x-2y)+2(y-x)

Đề câu này thấy sai sai á bạn

Check đề hộ mình nha.

11 tháng 8 2020

                                             Bài giải

\(a,\text{ }x\left(x+y\right)-\left(2x+2y\right)=x\left(x+y\right)-2\left(x+y\right)=\left(x-2\right)\left(x+y\right)\)

\(b,\text{ }5x\left(x-2y\right)+2\left(y-x\right)\)

Đề sai ///

10 tháng 8 2020

\(\left(\sqrt{2x}-y\right)^2=\left(\sqrt{2x}\right)^2-2\cdot\sqrt{2x}\cdot y+y^2=2x-2\sqrt{2x}\cdot y+y^2\)

\(\left(\sqrt{2x}+\sqrt{8y}\right)^2=\left(\sqrt{2x}\right)^2+2\left(\sqrt{2x}\right)\left(\sqrt{8y}\right)+\left(\sqrt{8y}\right)^2=2x+2\sqrt{16xy}+8y\)

Không chắc nha :)

10 tháng 8 2020

\8=====D

Giả sử:Đẳng thức trên là đúng

Ta có:\(a^3+b^3+c^3+d^3=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(c+d\right)\left(c^2-cd+d^2\right)\)

\(=\left(c+d\right)\left(c^2-cd+d^2-a^2+ab-b^2\right)=3\left(ab-cd\right)\left(c+d\right)\)

\(\Rightarrow c^2-cd+d^2-a^2+ab-b^2=3\left(ab-cd\right)\)

\(\Rightarrow c^2-cd+d^2-a^2+ab-b^2-3ab+3cd=0\)

\(\Rightarrow c^2+2cd+d^2-a^2-2ab-b^2=0\)

\(\Rightarrow\left(c+d\right)^2-\left(a+b\right)^2=0\)

\(\Rightarrow\left(a+b+c+d\right)\left(c+d-a-b\right)=0\)(Luôn đúng)

Vậy điều giả sử trên là đúng

Suy ra điều phải chứng minh

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

10 tháng 8 2020

\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\( < =>2\left[x\left(x^2+4x+4\right)-\left(2x\right)^2\right]=2\left(x^3-8\right)\)

\(< =>x^3+4x^2+4x-4x^2=x^3-8\)

\(< =>4x=-8< =>x=-2\)

10 tháng 8 2020

Bài làm:

Ta có: \(B=2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\)

\(\Leftrightarrow8x+16=0\)

\(\Leftrightarrow8x=-16\)

\(\Rightarrow x=-2\)

10 tháng 8 2020

\(A=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)-13\)

\(A=\left(x-3\right)^2+\left(y+2\right)^2-13\)

Có: \(\left(x-3\right)^2;\left(y+2\right)^2\ge0\forall x;y\)

=> \(\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\)

=> \(A\ge-13\)

<=> xảy ra <=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Vậy A min = -13 <=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

10 tháng 8 2020

x2 + y2 - 6x + 4y

= ( x2 - 6x + 9 ) + ( y2 + 4y + 4 ) - 9 - 4

= ( x - 3 )2 + ( y + 2 )2 - 13

\(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2-13\ge-13\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-3=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Vậy GTNN của biểu thức = -13, đạt được khi x = 3 và y = -2

Không chắc nha ;-;

10 tháng 8 2020

Bài làm:

Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-14x^2+40-72=0\)

\(\Leftrightarrow x^4-14x^2-32=0\)

\(\Leftrightarrow\left(x^4-16x^2\right)+\left(2x^2-32\right)=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)+2\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)

Mà \(x^2+2\ge2>0\left(\forall x\right)\)

\(\Rightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow x=\pm4\)

10 tháng 8 2020

( x + 2 )( x - 2 )( x2 - 10 ) = 72

<=> ( x2 - 4 )( x2 - 10 ) = 72

<=> x4 - 14x2 + 40 - 72 = 0

<=> x4 - 14x2 - 32 = 0

Đặt t = x2 ( \(t\ge0\))

Pt <=> t2 - 14t - 32 = 0

     <=> t2 + 2t - 16t - 32 = 0

     <=> t( t + 2 ) - 16( t + 2 ) = 0

     <=> ( t - 16 )( t + 2 ) = 0

     <=> \(\orbr{\begin{cases}t-16=0\\t+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}t=16\\t=-2\end{cases}}\)

\(t\ge0\Rightarrow t=16\)

=> x2 = 16

=> \(x=\pm4\)

10 tháng 8 2020

Gọi giao của AC và BD là M

Xét t/g ABM có AM + BM > AB (1)

Xét t/g DCM có DM +MC > DC (2)

Cộng (1) và (2) ta có:

AM +MC + BM +DM > AB + CD

hay AC + BD > AB + CD(đpcm)